Orbiter API Reference Manual
2010 Edition

Generated by Doxygen 1.5.3

Sat Aug 21 03:42:42 2010

CONTENTS 1

Contents

1 Orbiter API Reference Manual 1
2 Orbiter API Module Index 2
3 Orbiter API Hierarchical Index 4
4 Orbiter API Class Index 6
5 Orbiter API File Index 9
6 Orbiter API Page Index 9
7 Orbiter API Module Documentation 10
8 Orbiter API Class Documentation 190
9 Orbiter API File Documentation 516
10 Orbiter API Example Documentation 567
11 VESSEL2.cpp 568
12 Orbiter API Page Documentation 568

1 Orbiter API Reference Manual

Orbiter Software and documentation Copyright (C) 2010 Martin Schweiger

The Orbiter SDK Package contains this document in compiled HTML format (CHM) and in hyperlinked
PDF format.

1.1 Introduction

This reference document contains the specification for the Orbiter Application Programming Interface
(OAPI). The intended audience are developers who want to write DLL plugin modules for Orbiter. The
document is not required for using Orbiter.

The programming interface allows the development of third party modules to enhance the functionality of
the Orbiter core. Examples for modules are:

* new spacecraft (including custom flight models, instrument panels, etc.)
* new celestial bodies (including trajectory and atmospheric code)
* additional instruments, such as MFD (multifunctional display) modes

¢ global modules (networking, sound, etc.)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

1.2 Contents

1.2 Contents

The following sections of this document are important for developers of Orbiter addon modules:

» Section Orbiter API interface methods contains a set of functions for getting and setting general
simulation parameters in a running Orbiter simulation session. They are used by all types of plugin

modules.

» The VESSEL, VESSEL?2 and VESSEL3 classes are the base classes for vessel definitions. They are

particularly useful for developers who want to create their own spacecraft plugins.

e The MFD and MFD2 classes provide an interface for creating new multifunctional display modes.

* The oapi::GraphicsClient class provides an interface between Orbiter and external render engine
modules. It is interesting for developers who want to subsititute Orbiter’s default graphics module

with their own render engine plugin.

2 Orbiter API Module Index

2.1 Orbiter API Modules

Here is a list of all modules:
Configuration parameter identifiers
Render parameter identifiers
Bit flags for planetarium mode elements
Bit flags for blitting operations
Some useful general constants
Defines and Enumerations
Ephemeris data format bitflags
Handles
Mesh group editing flags
Bitflags for EXHAUSTSPEC flags field.
Light beacon shape parameters
Listentryflag
Listclbkflag
Animation flags
Thruster and thruster-group parameters
Airfoil orientation

Aerodynamic control surface types

10

14

14

15

16

17

10

18

29

31

31

32

32

32

32

34

34

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

2.1 Orbiter API Modules 3

Control surface axis orientation 35
Identifiers for visual events 35
Navigation mode identifiers 36
Manual control mode identifiers 37
Manual control device identifiers 37
RCS mode identifiers 38
HUD mode identifiers 38
MFD mode identifiers 39
MFD identifiers 40
Panel neighbour identifiers 40
Panel redraw event identifiers 41
Mouse event identifiers 41
Generic vessel message identifiers 42
Vessel mesh visibility flags 43
Navigation radio transmitter types 43
Object parameter flags 44
Keyboard key identifiers 170
Logical key ids 176
Structure definitions 17
Vectors and matrices 20
Local lighting interface 31
Orbiter API interface methods 44
Object access functions 51
Vessel creation and destruction 60
Body functions 61
Vessel functions 64
Coordinate transformations 79
Camera functions 83
Functions for planetary bodies 88

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

3 Orbiter API Hierarchical Index 4
Surface base interface 95
Time functions 98
Navigation radio transmitter functions 103
Script interpreter functions 107
Visual and mesh functions 109
HUD, MFD and panel functions 120
Drawing support functions 133
Surface functions 138
Custom MFD mode definition 142
Virtual cockpit functions 145
Customisation - custom menu, dialogs 149
File IO Functions 156
Utility functions 164
User input functions 165
Onscreen annotations 166
Obsolete functions 168
Top-level module callback functions 183
General module callback functions 183
Vessel module callback functions 184
Plugin module callback functions 186
3 Orbiter API Hierarchical Index
3.1 Orbiter API Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
ANIMATION 190
ANIMATIONCOMP 191
ATMCONST 192
ATMOSPHERE 193
ATMOSPHERE::PRM_IN 196

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

3.1 Orbiter API Class Hierarchy 5

ATMOSPHERE::PRM_OUT 196
ATMPARAM 197
BEACONLIGHTSPEC 197
CELBODY 200
CELBODY2 204
COLOUR4 209
oapi::DrawingTool 210
oapi::Brush 199
oapi::Font 218
oapi::Pen 309
ELEMENTS 210
ENGINESTATUS 211
EXHAUSTSPEC 212
ExternMFD 213
FogParam 217
oapi::GraphicsClient:: LABELLIST 256
oapi::GraphicsClient:: VIDEODATA 257
GROUPEDITSPEC 262
HELPCONTEXT 263
HUDPARAM 263
oapi::IVECTOR2 264
LaunchpadItem 264
LightEmitter 267
PointLight 310
SpotLight 328
LISTENTRY 273
MATERIAL 274
MATRIX3 274
MESHGROUP 275

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

4 Orbiter API Class Index 6
MESHGROUP_TRANSFORM 276
MESHGROUPEX 277
MFD 278

GraphMFD 258
MFD2 286
oapi::ModuleNV 296
oapi::Module 291
oapi::GraphicsClient 220
NAVDATA 299
NTVERTEX 300
ORBITPARAM 301
oapi::ParticleStream 302
PARTICLESTREAMSPEC 307
oapi::ScreenAnnotation 313
oapi::Sketchpad 316
VECTOR3 331
VESSEL 332
VESSEL2 482
VESSEL3 499
VESSELSTATUS 508
VESSELSTATUS2 510
VESSELSTATUS2::DOCKINFOSPEC 514
VESSELSTATUS2::FUELSPEC 515
VESSELSTATUS2::THRUSTSPEC 515

4 Orbiter API Class Index

4.1 Orbiter API Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ANIMATION (Animation definition) 190

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

4.1 Orbiter API Class List 7

ANIMATIONCOMP (Animation component definition) 191
ATMCONST (Planetary atmospheric constants structure) 192
ATMOSPHERE (Defines the physical atmospheric properties for a celestial body) 193
ATMOSPHERE::PRM_IN (Input parameters for atmospheric data calculation) 196
ATMOSPHERE::PRM_OUT (Output parameters for atmospheric data calculation) 196
ATMPARAM (Atmospheric parameters structure) 197
BEACONLIGHTSPEC (Vessel beacon light parameters) 197
oapi::Brush (A brush is a drawing resource for filling closed figures (rectangles, ellipses, poly-
gons)) 199
CELBODY (This is the base class for celestial body classes) 200
CELBODY?2 (Extension to CELBODY class) 204
COLOUR4 (Colour definition) 209

oapi::DrawingTool (Base class for various 2-D drawing resources (fonts, pens, brushes, etc.))210

ELEMENTS (Kepler orbital elements) 210
ENGINESTATUS (Engine status) 211
EXHAUSTSPEC (Engine exhaust render parameters) 212

ExternMFD (ExternMFD provides support for defining an MFD display in a plugin module)213
FogParam (Distance fog render parameters) 217

oapi::Font (A font resource for drawing text. A font has a defined size, typeface, slant, weight,
etc. Fonts can be selected into a Sketchpad and then apply to all subsequent Text calls) 218

oapi::GraphicsClient (Base class for external graphics client modules) 220

oapi::GraphicsClient:: LABELLIST (Label list description for celestial and surface markers

) 256
oapi::GraphicsClient:: VIDEODATA (Structure containing default video options, as stored in

Orbiter.cfg) 257
GraphMFD (This class is derived from MFD and provides a template for MFD modes con-

taining 2D graphs) 258
GROUPEDITSPEC (Structure used by oapiEditMeshGroup to define the group elements to

be replaced) 262
HELPCONTEXT (Context information for an Orbiter ingame help page) 263
HUDPARAM (Mode-specific parameters for HUD mode settings) 263
oapi::IVECTOR?2 (Integer-valued 2-D vector type) 264

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

4.1 Orbiter API Class List 8

LaunchpadItem (Base class to define launchpad items) 264
LightEmitter (Base class for defining a light source that can illuminate other objects) 267
LISTENTRY (Entry specification for selection list entry) 273
MATERIAL (Material definition) 274
MATRIX3 (3x3-element matrix) 274
MESHGROUP (Defines a mesh group (subset of a mesh)) 275
MESHGROUP_TRANSFORM (This structure defines an affine mesh group transform
(translation, rotation or scaling)) 276
MESHGROUPEX (Extended mesh group definition) 277

MFD (This class acts as an interface for user defined MFD (multi functional display) modes)278

MFD2 (Extended MFD class) 286
oapi::Module (Generic Orbiter plugin interface class) 291
oapi::ModuleNV (Generic Orbiter plugin interface class) 296
NAVDATA (Navigation transmitter data) 299
NTVERTEX (Vertex definition including normals and texture coordinates) 300

ORBITPARAM (Secondary orbital parameters derived from the primary ELEMENTS) 301

oapi::ParticleStream (Defines an array of ''particles' (e.g. for exhaust and reentry effects, gas

venting, condensation, etc.)) 302
PARTICLESTREAMSPEC (Particle stream parameters) 307
oapi::Pen (A pen is a resource used for drawing lines and the outlines of closed figures such

as retangles, ellipses and polygons) 309
PointLight (Class for isotropic point light source) 310

oapi::ScreenAnnotation (Defines a block of text displayed on top of the simulation render
window) 313

oapi::Sketchpad (A Sketchpad object defines an environment for drawing onto 2-D surfaces)316

SpotLight (Class for directed spot light sources) 328
VECTORS3 (3-element vector) 331
VESSEL (Base class for objects of vessel type (spacecraft and similar)) 332
VESSEL?2 (Callback extensions to the VESSEL class) 482
VESSEL3 (Callback extensions to the VESSEL class) 499
VESSELSTATUS (Vessel status parameters (version 1)) 508

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

5 Orbiter API File Index 9

VESSELSTATUS?2 (Vessel status parameters (version 2)) 510
VESSELSTATUS2::DOCKINFOSPEC (Dock info list) 514
VESSELSTATUS2::FUELSPEC (Propellant list) 515
VESSELSTATUS2::THRUSTSPEC (Thruster definition list) 515

5 Orbiter API File Index

5.1 Orbiter API File List

Here is a list of all documented files with brief descriptions:

Orbitersdk/include/CelBodyAPILh (Contains interface classes for celestial bodies: CELBODY
and CELBODY2) 516

Orbitersdk/include/DrawAPLh (2-D surface drawing support interface) 517
Orbitersdk/include/MFDAPILh (Class interfaces for MFD instruments and MFD modes) 518
Orbitersdk/include/OrbiterAPLh (General API interface functions) 518

Orbitersdk/include/VesselAPLh (Contains the class interfaces for vessel objects (VESSEL,
VESSEL?2, VESSEL3)) 566

6 Orbiter API Page Index

6.1 Orbiter API Related Pages

Here is a list of all related documentation pages:

Planet Modules 568
Graphics Client Development 571
Deleted and obsolete functions and methods 571
Basics of orbital mechanics 571
Particle Streams HowTo 575
Vessel module concepts 576
Todo List 577
Deprecated List 578
Bug List 580

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7 Orbiter API Module Documentation

10

7 Orbiter API Module Documentation

7.1 Ephemeris data format bitflags
7.1.1 Detailed Description

Ephemeris data format bitflags

Defines

* #define EPHEM_TRUEPOS 0x01

true body position

#define EPHEM_TRUEVEL 0x02
true body velocity

* #define EPHEM_BARYPOS 0x04

barycentric position

#define EPHEM_BARY VEL 0x08

barycentric velocity

#define EPHEM_BARYISTRUE 0x10
body has no child objects

#define EPHEM_PARENTBARY 0x20

ephemerides are computed in terms of the barycentre of the parent body’s system

#define EPHEM_POLAR 0x40

data is returned in polar format

7.2 Configuration parameter identifiers
7.2.1 Detailed Description

Used by GraphicsClient::GetConfigParam()

Defines

¢ #define CFGPRM_SURFACEMAXLEVEL 0x0001
¢ #define CFGPRM_SURFACEREFLECT 0x0002

¢ #define CFGPRM_SURFACERIPPLE 0x0003

e #define CFGPRM_SURFACELIGHTS 0x0004

« #define CFGPRM_SURFACEPATCHAP 0x0005

¢ #define CFGPRM_SURFACELIGHTBRT 0x0006
¢ #define CFGPRM_ATMHAZE 0x0007

e #define CFGPRM_ATMFOG 0x0008

« #define CFGPRM_CLOUDS 0x0009

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.2 Configuration parameter identifiers

#define CFGPRM_CLOUDSHADOWS 0x000A
#define CFGPRM_PLANETARIUMFLAG 0x000B
#define CFGPRM_STARRENDERPRM 0x000C
#define CFGPRM_AMBIENTLEVEL 0x000E
#define CFGPRM_VESSELSHADOWS 0x000F
#define CFGPRM_OBJECTSHADOWS 0x0010
#define CFGPRM_OBJECTSPECULAR 0x0011
#define CFGPRM_SURFACESPECULAR 0x0012
#define CFGPRM_CSPHERETEXTURE 0x0013
#define CFGPRM_CSPHEREINTENS 0x0014
#define CFGPRM_LOCALLIGHT 0x0015

#define CFGPRM_MAXLIGHT 0x0016

7.2.2 Define Documentation
7.2.2.1 #define CFGPRM_AMBIENTLEVEL 0x000E
Ambient light level (brightness of unlit nonemissive surfaces) in the range 0-255.

Parameter type:

DWORD

7.2.2.2 #define CFGPRM_ATMFOG 0x0008

Flag for rendering distance fog within planetary atmospheres
Parameter type:

bool

7.2.2.3 #define CFGPRM_ATMHAZE 0x0007

Flag for rendering "atmospheric haze" over planets with atmospheres

Parameter type:

bool

7.2.2.4 #define CFGPRM_CLOUDS 0x0009

Flag for rendering planetary cloud layers
Parameter type:

bool

7.2.2.5 #define CFGPRM_CLOUDSHADOWS 0x000A

Flag for rendering cloud shadows on the planet surface
Parameter type:

bool

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.2 Configuration parameter identifiers 12

7.2.2.6 #define CFGPRM_CSPHEREINTENS 0x0014

Flag for rendering intensity of celestial sphere background textures
Parameter type:

double

7.2.2.7 #define CFGPRM_CSPHERETEXTURE 0x0013

File path for celestial sphere background textures
Parameter type:

xchar

7.2.2.8 #define CFGPRM_LOCALLIGHT 0x0015

Flag for enabling local light sources
Parameter type:

bool

7.2.2.9 #define CFGPRM_MAXLIGHT 0x0016

Max number of light sources
Parameter type:

int

7.2.210 #define CFGPRM_OBJECTSHADOWS 0x0010

Flag for rendering object shadows on the planet surface
Parameter type:

bool

7.2.2.11 #define CFGPRM_OBJECTSPECULAR 0x0011

Flag for enabling specular reflections from objects
Parameter type:

bool

7.2.2.12 #define CFGPRM_PLANETARIUMFLAG 0x000B

Bit flag for "planetarium mode" elements. For a description of the available bit flags, see Bit flags for
planetarium mode elements

Parameter type:

DWORD

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.2 Configuration parameter identifiers 13

7.2.2.13 #define CFGPRM_STARRENDERPRM 0x000C

Parameters for rendering stars on the celestial sphere.
Parameter type:

struct StarRenderPrm

7.2.2.14 #define CFGPRM_SURFACELIGHTBRT 0x0006

Brightness factor for emissive city light textures (0-1)
Parameter type:

double

7.2.2.15 #define CFGPRM_SURFACELIGHTS 0x0004

Flag for rendering emissive textures ("city lights") on the unlit side of planetary surfaces.
Parameter type:

bool

7.2.2.16 #define CFGPRM_SURFACEMAXLEVEL 0x0001

Max. level of detail for rendering planetary surfaces (1-10)

Parameter type:

DWORD

7.2.2.17 #define CFGPRM_SURFACEPATCHAP 0x0005

Angular aperture fraction over which to use high resolution patches (0-1)
Parameter type:

double

7.2.2.18 #define CFGPRM_SURFACEREFLECT 0x0002

Flag for rendering planet surfaces with specular reflections (e.g. for oceans)
Parameter type:

bool

7.2.2.19 #define CFGPRM_SURFACERIPPLE 0x0003

Flag for rendering specular reflections with microtexture ("ripples")

Parameter type:

bool

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.3 Render parameter identifiers

7.2.2.20 #define CFGPRM_SURFACESPECULAR 0x0012

Flag for enabling specular reflections from planetary surfaces

Parameter type:

bool

7.2.2.21 #define CFGPRM_VESSELSHADOWS 0x000F

Flag for rendering vessel shadows on the planet surface

Parameter type:

bool

7.3 Render parameter identifiers

7.3.1 Detailed Description
See also:

GraphicsClient::clbkGetRenderParam()

Defines

* #define RP_COLOURDEPTH 1

colour bit depth of the render target

e #define RP_ZBUFFERDEPTH 2
z-buffer depth of the render target

* #define RP_STENCILDEPTH 3

7.3.2 Define Documentation

7.3.2.1 #define RP_STENCILDEPTH 3

stencil buffer depth of the render target

7.4 Bit flags for planetarium mode elements

Defines

* #define PLN_ENABLE 0x0001

Enable planetarium mode (master flag).

¢ #define PLN_CGRID 0x0002
Enable celestial grid.

e #define PLN_EGRID 0x0004
Enable ecliptic grid.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.5 Bit flags for blitting operations

e #define PLN_ECL 0x0008
Enable line of ecliptic.

* #define PLN_EQU 0x0010

Enable celestial equator.

e #define PLN_CONST 0x0020

Enable constellation lines.

* #define PLN_CNSTLABEL 0x0040

Enable constellation labels.

* #define PLN_CMARK 0x0080

Enable celestial body markers.

* #define PLN_VMARK 0x0100

Enable vessel markers.

* #define PLN_BMARK 0x0200

Enable surface base markers.

* #define PLN_RMARK 0x0400

Enable VOR transmitter markers.

* #define PLN_LMARK 0x0800

Enable planetary surface labels.

e #define PLN_CNSTLONG 0x1000

Enable long constellation names.

¢ #define PLN_CNSTSHORT 0x2000

Enable short constellation names.

* #define PLN_CCMARK 0x4000

Enable celestial sphere labels.

o #define PLN_SURFMARK (PLN_BMARK | PLN_RMARK | PLN_LMARK)

7.5 Bit flags for blitting operations
Defines

¢ #define BLT_SRCCOLORKEY 0x1

Use source surface colour key for transparency.

* #define BLT_TGTCOLORKEY 0x2

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.6 Some useful general constants

16

7.5.1 Define Documentation

7.5.1.1 #define BLT_TGTCOLORKEY 0x2

Use target surface colour key for transparency

7.6 Some useful general constants

Variables

* const double PI = 3.14159265358979323846
pi

¢ const double PI0S = 1.57079632679489661923
pi/2

* const double PI2 = 6.28318530717958647693

pix2

e const double RAD = P1/180.0

factor to map degrees to radians

¢ const double DEG = 180.0/PI

factor to map radians to degrees

* const double CO =299792458.0
speed of light in vacuum [m/s]

¢ const double TAUA = 499.004783806
light time for 1 AU [s]

¢ const double AU = CO«xTAUA

astronomical unit (mean geocentric distance of the sun) [m]

e const double GGRAYV = 6.6725%¢-11

gravitational constant [m” 3 kg"-1 s"-2]

e const double G = 9.81

gravitational acceleration [m/s"2] at Earth mean radius

e const double ATMP = 101.4¢e3

atmospheric pressure [Pa] at Earth sea level

e const double ATMD = 1.293

atmospheric density [kg/m” 3] at Earth sea level

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.7 Defines and Enumerations

7.7 Defines and Enumerations

Modules

* Ephemeris data format bitflags

* Handles

* Mesh group editing flags

* Bitflags for EXHAUSTSPEC flags field.
» Light beacon shape parameters

e Listentryflag

* Listclbkflag

* Animation flags

 Thruster and thruster-group parameters
* Airfoil orientation

* Aerodynamic control surface types
* Control surface axis orientation

* Identifiers for visual events

» Navigation mode identifiers

* Manual control mode identifiers

* Manual control device identifiers

* RCS mode identifiers

* HUD mode identifiers

* MFD mode identifiers

* MFD identifiers

* Panel neighbour identifiers

* Panel redraw event identifiers

* Mouse event identifiers

* Generic vessel message identifiers
* Vessel mesh visibility flags

» Navigation radio transmitter types
* Object parameter flags

» Keyboard key identifiers

* Logical key ids

7.8 Structure definitions

Classes

struct COLOUR4

colour definition

struct NTVERTEX

vertex definition including normals and texture coordinates

struct MESHGROUP

Defines a mesh group (subset of a mesh).

struct MESHGROUPEX

extended mesh group definition

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.9 Handles

* struct GROUPEDITSPEC
Structure used by oapiEditMeshGroup to define the group elements to be replaced.

e struct MATERIAL

material definition

e struct ATMCONST

Planetary atmospheric constants structure.

7.9 Handles

Typedefs

* typedef void * OBJHANDLE

¢ typedef void x VISHANDLE

¢ typedef void *x MESHHANDLE

¢ typedef int *x DEVMESHHANDLE

* typedef void * SURFHANDLE

¢ typedef void * PANELHANDLE

* typedef void * FILEHANDLE

* typedef void * INTERPRETERHANDLE

* typedef void * THRUSTER_HANDLE

¢ typedef void *x THGROUP_HANDLE

* typedef void * PROPELLANT_HANDLE

¢ typedef void *x PSTREAM_HANDLE

¢ typedef void * DOCKHANDLE

¢ typedef void *x ATTACHMENTHANDLE

¢ typedef void * AIRFOILHANDLE

* typedef void * CTRLSURFHANDLE

* typedef void *x NAVHANDLE

* typedef void * ANIMATIONCOMPONENT_HANDLE
* typedef void * LAUNCHPADITEM_HANDLE
* typedef void *x NOTEHANDLE

7.9.1 Typedef Documentation

7.9.1.1 typedef void+« AIRFOILHANDLE

Handle for vessel airfoils

7.9.1.2 typedef voidx ANIMATIONCOMPONENT_HANDLE

Handle for animation components

7.9.1.3 typedef voidx ATTACHMENTHANDLE

Handle vor vessel passive attachment points

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.9 Handles

19

7.9.14 typedef voidx CTRLSURFHANDLE

Handle for vessel aerodynamic control surfaces

7.9.1.5 typedef intx DEVMESHHANDLE

Handle for graphics-client-specific meshes

7.9.1.6 typedef voidx DOCKHANDLE

Handle for vessel docking ports

7.9.1.7 typedef voidx FILEHANDLE

Handle for file streams

Examples:

clbkLoadStateEx.cpp.

7.9.1.8 typedef void« INTERPRETERHANDLE

Handle for script interpreters

7.9.1.9 typedef voidx LAUNCHPADITEM_HANDLE

Handle for custom items added to Launchpad "Extra" list

7.9.1.10 typedef void+ MESHHANDLE

Handle for meshes

7.9.1.11 typedef voidx NAVHANDLE
Handle for a navigation radio transmitter (VOR, ILS, IDS, XPDR)

7.9.1.12 typedef void+ NOTEHANDLE

Handle for onscreen annotation objects

7.9.1.13 typedef voidx OBJHANDLE

Handle for objects (vessels, stations, planets)

Examples:

VESSEL2.cpp.

7.9.1.14 typedef void« PANELHANDLE

Handle for 2D instrument panels

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices

20

7.9.1.15 typedef void+ PROPELLANT _HANDLE

Propellant resource handle

7.9.1.16 typedef voidx PSTREAM_HANDLE

Handle for particle streams

7.9.1.17 typedef void+ SURFHANDLE

Handle for bitmap surfaces and textures (panels and panel items)

7.9.1.18 typedef void« THGROUP_HANDLE

Handle for logical thruster groups

7.9.1.19 typedef void+ THRUSTER_HANDLE

Handle for thrusters

7.9.1.20 typedef void+ VISHANDLE

Handle for visuals

7.10 Vectors and matrices

7.10.1 Detailed Description

Vectors and matrices are used to represent positions, velocities, translations, rotations, etc. in the 3-
dimensional object space. Orbiter provides the VECTOR3 and MATRIX3 structures for 3-D vectors and
matrices. A number of utility functions allow common operations such as matrix-vector products, dot and

vector products, etc.

Classes

e union VECTOR3

3-element vector

e union MATRIX3

3x3-element matrix

Functions

* VECTOR3 _V (double x, double y, double z)

Vector composition.

* void veccpy (VECTOR3 &a, const VECTOR3 &b)

Vector copy.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices 21

* VECTOR3 operator+ (const VECTOR3 &a, const VECTOR3 &b)

Vector addition.

* VECTOR3 operator- (const VECTOR3 &a, const VECTOR3 &b)

Vector subtraction.

¢ VECTORS3 operator * (const VECTOR3 &a, const double f)

Multiplication of vector with scalar.

¢ VECTORS3 operator/ (const VECTOR3 &a, const double f)

Division of vector by a scalar.

¢ VECTORS3 & operator+= (VECTOR3 &a, const VECTOR3 &b)

Vector addition-assignment a += b.

* VECTORS3 & operator-= (VECTOR3 &a, const VECTOR3 &b)

Vector subtraction-assignment a -= b.

* VECTORS3 & operator = (VECTOR3 &a, const double f)

Vector-scalar multiplication-assignment a = f.

* VECTOR3 & operator/= (VECTOR3 &a, const double f)

Vector-scalar division-assignment a /= f.

* VECTOR3 operator- (const VECTOR3 &a)

Vector unary minus -a.

* double dotp (const VECTOR3 &a, const VECTOR3 &b)

Scalar (inner, dot) product of two vectors.

* VECTOR3 crossp (const VECTOR3 &a, const VECTOR3 &b)

Vector (cross) product of two vectors.

* double length (const VECTOR3 &a)
Length (L2-norm) of a vector.

¢ double dist (const VECTOR3 &a, const VECTOR3 &b)

Distance between two points.

¢ void normalise (VECTOR3 &a)

Normalise a vector.

* VECTORS3 unit (const VECTOR3 &a)

Returns normalised vector.

¢ MATRIX3 _M (double m11, double m12, double m13, double m21, double m22, double m23, dou-
ble m31, double m32, double m33)

Matrix composition.

* MATRIX3 identity ()

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices 22

Returns the identity matrix.

* MATRIX3 outerp (const VECTOR3 &a, const VECTOR3 &b)

Outer product of two vectors.

e MATRIX3 operator+ (const MATRIX3 &A, double s)

Sum of matrix and scalar.

e MATRIX3 operator- (const MATRIX3 &A, double s)

Difference of matrix and scalar.

¢ MATRIX3 operator * (const MATRIX3 &A, double s)

Product of matrix and scalar.

* MATRIX3 operator/ (const MATRIX3 &A, double s)

Quotient of matrix and scalar.

* MATRIX3 & operator x= (MATRIX3 &A, double s)

Matrix-scalar product-assignment A x=s.

* MATRIX3 & operator/= (MATRIX3 &A, double s)

Matrix-scalar division-assignment A /= s.

* VECTOR3 mul (const MATRIX3 &A, const VECTOR3 &b)

Matrix-vector multiplication.

e VECTORS3 tmul (const MATRIX3 &A, const VECTOR3 &b)

Matrix transpose-vector multiplication.

e MATRIX3 mul (const MATRIX3 &A, const MATRIX3 &B)

Matrix-matrix multiplication.

7.10.2 Function Documentation

7.10.2.1 MATRIX3 _M (double mil1, double mi2, double mi13, double m21, double m22, double
m23, double m31, double m32, double m33) [inline]

Matrix composition.

Returns a matrix composed of the provided elements.

Returns:
mi1 M2 Mi3

ma1 M2 M23
m31 Mm32 MM33

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices

23

7.10.2.2 VECTORS3 _V (double x, double y, doublez) [inline]
Vector composition.

Returns a vector composed of the three provided arguments
Parameters:

X X-component
Yy y-component
Z z-component

Returns:
vector defined as (X,y,z)
Examples:

clbkPreStep.cpp.

7.10.2.3 VECTORS3 crossp (const VECTOR3 & a, const VECTOR3 & b) [inline]
Vector (cross) product of two vectors.

Parameters:

<« a First vector operand
«— b Second vector operand

Returns:

Vector product axb

7.10.2.4 double dist (const VECTOR3 & a, const VECTOR3 & b) [inline]
Distance between two points.

Parameters:

«— a First point

«— b Second point

Returns:

Distance between a and b

7.10.2.5 double dotp (const VECTOR3 & a, const VECTOR3 & b) [inline]
Scalar (inner, dot) product of two vectors.

Parameters:

«— a First vector operand
«— b Second vector operand

Returns:

Scalar product ab

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices

7.10.2.6 double length (const VECTOR3 & @) [inline]

Length (L2-norm) of a vector.

Parameters:

a Vector operand

Returns:

Vector norm [a|o

7.10.2.7 MATRIX3 mul (const MATRIX3 & A, const MATRIX3 & B) [inline]

Matrix-matrix multiplication.

Parameters:

«— A First matrix operand

«— B Second matrix operand

Returns:

Result of AB

7.10.2.8 VECTOR3 mul (const MATRIX3 & A, const VECTOR3 & b) [inline]

Matrix-vector multiplication.

Parameters:

«— A matrix operand

«— b vector operand

Returns:

Result of Ab

7.10.2.9 void normalise (VECTOR3 & a) [inline]
Normalise a vector.

Resizes the argument vector to length 1.

Parameters:

< a Vector argument

Note:

The length of a must be greater than 0.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices

25

7.10.2.10 MATRIX3 operator * (const MATRIX3 & A, doubles) [inline]

Product of matrix and scalar.

Parameters:

«— A Matrix operand (left)

«— § scalar operand (right)

Returns:

Asxs (element-wise product of A and s)

7.10.2.11 VECTORS3 operator * (const VECTOR3 & a, const double f) [inline]

Multiplication of vector with scalar.

Parameters:

a vector operand

S scalar operand

Returns:

Result of element-wise axf.

7.10.2.12 MATRIX3& operator = (MATRIX3 & A, doubles) [inline]

Matrix-scalar product-assignment A *=s.

Parameters:

«— A Matrix operand (left)

«— s scalar operand (right)

Returns:

Replaces A with element-wise product Axs and returns the result.

7.10.2.13 VECTOR3& operator x= (VECTOR3 & a, const double f) [inline]

Vector-scalar multiplication-assignment a *= f.

Parameters:

< a Left-hand vector operand

« f Right hand scalar operand

Returns:

Replaces a with element-wise axf and returns the result.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices 26

7.10.2.14 MATRIX3 operator+ (const MATRIX3 & A, doubles) [inline]

Sum of matrix and scalar.

Parameters:

«— A Matrix operand (left)

«— § scalar operand (right)

Returns:

A+s (element-wise sum of A and s)

7.10.2.15 VECTORS3 operator+ (const VECTOR3 & a, const VECTOR3 & b) [inline]

Vector addition.

Parameters:

a first vector operand

b second vector operand

Returns:

Result of a+b.

7.10.2.16 VECTOR3& operator+= (VECTOR3 & a, const VECTOR3 & b) [inline]

Vector addition-assignment a += b.

Parameters:

< a Left-hand vector operand

«— b Right-hand vector operand

Returns:

Replaces a with a+b and returns the result.

7.10.2.17 MATRIX3 operator- (const MATRIX3 & A, doubles) [inline]

Difference of matrix and scalar.

Parameters:

«— A Matrix operand (left)

«— § scalar operand (right)

Returns:

A-s (element-wise difference of A and s)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices 27

7.10.2.18 VECTORS operator- (const VECTOR3 & a) [inline]

Vector unary minus -a.

Parameters:

<« a Vector operand

Returns:

Negative vector (-a.x, -a.y, -a.Z)

7.10.2.19 VECTORS3 operator- (const VECTOR3 & a, const VECTOR3 & b) [inline]

Vector subtraction.

Parameters:

a first vector operand

b second vector operand

Returns:

Result of a-b.

7.10.2.20 VECTOR3& operator-= (VECTOR3 & a, const VECTOR3 & b) [inline]

Vector subtraction-assignment a -=b.

Parameters:

< a Left-hand vector operand

« b Right-hand vector operand

Returns:

Replaces a with a-b and returns the result.

7.10.2.21 MATRIX3 operator/ (const MATRIX3 & A, doubles) [inline]

Quotient of matrix and scalar.

Parameters:

«— A Matrix operand (left)

«— § scalar operand (right)

Returns:

Als (element-wise quotient of A and s)

Note:

s !=0is required.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.10 Vectors and matrices 28

7.10.2.22 VECTORS operator/ (const VECTOR3 & a, const double f) [inline]

Division of vector by a scalar.

Parameters:
a vector operand
[scalar operand
Returns:

Result of element-wise a/f.

7.10.2.23 MATRIX3& operator/= (MATRIX3 & A, doubles) [inline]

Matrix-scalar division-assignment A /=s.

Parameters:
«— A Matrix operand (left)
«— s scalar operand (right)
Returns:

Replaces A with element-wise quotient A/s and returns the result.

Note:

s != 0 is required.

7.10.2.24 VECTOR3& operator/= (VECTOR3 & a, const double f) [inline]

Vector-scalar division-assignment a /=f.

Parameters:
< a Left-hand vector operand
« f Right-hand scalar operand
Returns:

Replaces a with element-wise a/f and returns the result.

7.10.2.25 MATRIX3 outerp (const VECTOR3 & a, const VECTOR3 & b) [inline]

Outer product of two vectors.

Parameters:

«— a First vector operand

«— b Second vector operand

Returns:

Outer product abl , where a and b represent column vectors.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.11 Mesh group editing flags 29

7.10.2.26 VECTORS3 tmul (const MATRIX3 & A, const VECTOR3 & b) [inline]

Matrix transpose-vector multiplication.

Parameters:
«— A matrix operand

« b vector operand

Returns:

Result of AT b

7.10.2.27 VECTORS3 unit (const VECTOR3 & a) [inline]
Returns normalised vector.

Returns a vector of length 1 with the same direction as the argument vector.

Parameters:

<« a Vector argument

Returns:

Normalised vector.

Note:

The length of a must be greater than 0.

7.10.2.28 void veccpy (VECTOR3 & a, const VECTOR3 & b) [inline]
Vector copy.

Copies the element values from the source to the target vector.

Parameters:

— a target vector

«— b source vector

7.11 Mesh group editing flags
7.11.1 Detailed Description

These constants can be applied to the flags field of the GROUPEDITSPEC structure to define which parts
of a mesh group are to be modified.

Note:
The GRPEDIT_SETUSERFLAG, GRPEDIT_ADDUSERFLAG and GRPEDIT _DELUSERFLAG
flags are mutually exclusive. Only one can be used at a time.

See also:

GROUPEDITSPEC, oapiEditMeshGroup

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.11

Mesh group editing flags 30

Defines

#define GRPEDIT_SETUSERFLAG 0x0001
replace the group’s UsrFlag entry with the value in the GROUPEDITSPEC structure.

#define GRPEDIT_ADDUSERFLAG 0x0002
Add the UsrFlag value to the group’s UsrFlag entry.

#define GRPEDIT_DELUSERFLAG 0x0004
Remove the UsrFlag value from the group’s UsrFlag entry.

#define GRPEDIT_VTXCRDX 0x0008

Replace vertex x-coordinates.

#define GRPEDIT_VTXCRDY 0x0010

Replace vertex y-coordinates.

#define GRPEDIT_VTXCRDZ 0x0020

Replace vertex z-coordinates.

#define GRPEDIT_VTXCRD (GRPEDIT_VTXCRDX | GRPEDIT_VTXCRDY | GRPEDIT._-
VTXCRDZ)

Replace vertex coordinates.

#define GRPEDIT_VTXNMLX 0x0040

Replace vertex x-normals.

#define GRPEDIT_VTXNMLY 0x0080

Replace vertex y-normals.

#define GRPEDIT_VTXNMLZ 0x0100

Replace vertex z-normals.

#define GRPEDIT_VTXNML (GRPEDIT_VTXNMLX | GRPEDIT_VTXNMLY | GRPEDIT_-
VTXNMLZ)

Replace vertex normals.

#define GRPEDIT_VTXTEXU 0x0200

Replace vertex u-texture coordinates.

#define GRPEDIT_VTXTEXYV 0x0400

Replace vertex v-texture coordinates.

#define GRPEDIT_VTXTEX (GRPEDIT_VTXTEXU | GRPEDIT_VTXTEXV)

Replace vertex texture coordinates.

#define GRPEDIT_VTX (GRPEDIT_VTXCRD | GRPEDIT_VTXNML | GRPEDIT_VTXTEX)

Replace vertices.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.12 Bitflags for EXHAUSTSPEC flags field.

31

7.12 Bitflags for EXHAUSTSPEC flags field.

7.12.1 Detailed Description
See also:

EXHAUSTSPEC

Defines

* #define EXHAUST_CONSTANTLEVEL 0x0001

exhaust level is constant

* #define EXHAUST_CONSTANTPOS 0x0002

exhaust position is constant

¢ #define EXHAUST_CONSTANTDIR 0x0004

exhaust direction is constant

7.13 Local lighting interface
7.13.1 Detailed Description
The classes in this group define local light sources.

See also:

VESSEL3::AddPointLight, VESSEL3::AddSpotLight

Classes

e class LightEmitter

Base class for defining a light source that can illuminate other objects.

* class PointLight

Class for isotropic point light source.

* class SpotLight

Class for directed spot light sources.

7.14 Light beacon shape parameters

7.14.1 Detailed Description

See also:

BEACONLIGHTSPEC

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.15 Listentryflag 32

Defines

* #define BEACONSHAPE_COMPACT 0

compact beacon shape

¢ #define BEACONSHAPE_DIFFUSE 1

diffuse beacon shape

¢ #define BEACONSHAPE_STAR 2

star-shaped beacon

7.15 Listentryflag

See also:

LISTENTRY

7.16 Listclbkflag

See also:

LISTENTRY

7.17 Animation flags

7.17.1 Detailed Description

See also:

VESSEL::Add AnimationComponent

Defines

« #define LOCALVERTEXLIST ((UINT)(-1))

flags animation component as explicit vertex list

« #define MAKEGROUPARRAY (x) ((UINT)x)

casts a vertex array into a group

7.18 Thruster and thruster-group parameters
Enumerations

e enum ENGINETYPE { ENGINE_MAIN, ENGINE_RETRO, ENGINE_HOVER, ENGINE_-
ATTITUDE }

Thruster group identifiers (obsolete).

e enum EXHAUSTTYPE { EXHAUST_MAIN, EXHAUST_RETRO, EXHAUST_HOVER,
EXHAUST_CUSTOM }

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.18 Thruster and thruster-group parameters 33

e enum THGROUP_TYPE {
THGROUP_MAIN, THGROUP_RETRO, THGROUP_HOVER, THGROUP_ATT_PITCHUP,

THGROUP_ATT_PITCHDOWN, THGROUP_ATT_YAWLEFT, THGROUP_ATT_YAWRIGHT,
THGROUP_ATT_BANKLEFT,

THGROUP_ATT_BANKRIGHT, THGROUP_ATT_RIGHT, THGROUP_ATT_LEFT,
THGROUP_ATT_UP,
THGROUP_ATT_DOWN, THGROUP_ATT_FORWARD, THGROUP_ATT_BACK,

THGROUP_USER = 0x40 }
Thruster group types.

7.18.1 Enumeration Type Documentation

7.18.1.1 enum ENGINETYPE

Thruster group identifiers (obsolete).

Enumerator:

ENGINE_MAIN main thrusters
ENGINE_RETRO retro thrusters

ENGINE _HOVER hover thrusters
ENGINE_ATTITUDE attitude (RCS) thrusters

7.18.1.2 enum THGROUP_TYPE
Thruster group types.

See also:

VESSEL::CreateThrusterGroup

Enumerator:

THGROUP_MAIN main thrusters
THGROUP_RETRO retro thrusters
THGROUP_HOVER hover thrusters
THGROUP_ATT_PITCHUP rotation: pitch up
THGROUP_ATT_PITCHDOWN rotation: pitch down
THGROUP_ATT _YAWLEFT rotation: yaw left
THGROUP_ATT_YAWRIGHT rotation: yaw right
THGROUP_ATT _BANKLEFT rotation: bank left
THGROUP_ATT _BANKRIGHT rotation: bank right
THGROUP_ATT _RIGHT translation: move right
THGROUP_ATT _LEFT translation: move left
THGROUP_ATT_UP translation: move up
THGROUP_ATT_DOWN translation: move down
THGROUP_ATT FORWARD translation: move forward
THGROUP_ATT _BACK translation: move back
THGROUP_USER user-defined group

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.19 Airfoil orientation 34

7.19 Airfoil orientation

Enumerations

* enum AIRFOIL_ORIENTATION { LIFT_VERTICAL, LIFT_HORIZONTAL }

Lift vector orientation for airfoils.

7.19.1 Enumeration Type Documentation

7.19.1.1 enum AIRFOIL_ORIENTATION
Lift vector orientation for airfoils.

Defines the orientation of an airfoil by the direction of the lift vector generated (vertical or horizontal).

See also:

VESSEL::CreateAirfoil, VESSEL::CreateAirfoil2, VESSEL::CreateAirfoil 3

Enumerator:

LIFT_VERTICAL lift direction is vertical (e.g. elevator)
LIFT HORIZONTAL lift direction is horizontal (e.g. rudder)

7.20 Aerodynamic control surface types

Enumerations

e enum AIRCTRL_TYPE {
AIRCTRL_ELEVATOR, AIRCTRL_RUDDER, AIRCTRL_AILERON, AIRCTRL_FLAP,
AIRCTRL_ELEVATORTRIM, AIRCTRL_RUDDERTRIM }

Control surfaces provide attitude and drag control during atmospheric flight.

7.20.1 Enumeration Type Documentation

7.20.1.1 enum AIRCTRL_TYPE

Control surfaces provide attitude and drag control during atmospheric flight.

See also:

VESSEL::CreateControlSurface, VESSEL::CreateControlSurface?2, VES-
SEL::CreateControlSurface3

Enumerator:

AIRCTRL_ELEVATOR elevator control (pitch control)
AIRCTRL_RUDDER rudder control (yaw control)
AIRCTRL_AILERON aileron control (bank control)
AIRCTRL _FLAP flaps (lift, drag control)
AIRCTRL_ELEVATORTRIM elevator trim
AIRCTRL_RUDDERTRIM rudder trim

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.21 Control surface axis orientation 35

7.21 Control surface axis orientation

Defines

* #define AIRCTRL_AXIS_AUTO 0

Constants to define the rotation axis and direction of aerodynamic control surfaces.

#define AIRCTRL_AXIS_YPOS 1

y-axis (vertical), positive rotation

* #define AIRCTRL_AXIS_YNEG 2

y-axis (vertical), negative rotation

#define AIRCTRL_AXIS_XPOS 3

x-axis (transversal), positive rotation

#define AIRCTRL_AXIS_XNEG 4

x-axis (transversal), negative rotation

7.21.1 Define Documentation

7.21.1.1 #define AIRCTRL_AXIS_AUTO 0

Constants to define the rotation axis and direction of aerodynamic control surfaces.

See also:

VESSEL::CreateControlSurface, VESSEL.::CreateControlSurface?2, VES-
SEL::CreateControlSurface3 automatic orientation

7.22 Identifiers for visual events
7.22.1 Detailed Description

ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok sk ok ok ok sk sk sk ok sk ok sk ok sk sk ok sk sk sk ok sk ok ok sk sk ok sk ok ok ok ok ok ok ok

These constants define events that are sent from the Orbiter core to visual instances in a graphics client.
The client receives these notifications via the oapi::GraphicsClient::clbkVisEvent callback function, where
the first parameter is the event identifier, and the second parameter is a message-specific context value.

Defines

* #define EVENT_VESSEL_INSMESH 0

Insert a mesh (context: mesh index).

* #define EVENT_VESSEL_DELMESH 1

Delete a mesh (context: mesh index, or -1 for all).

* #define EVENT_VESSEL_MESHVISMODE 2

Set mesh visibility mode (context: mesh index).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.23 Navigation mode identifiers 36

* #define EVENT_VESSEL_RESETANIM 3

Reset animations.

#define EVENT_VESSEL_CLEARANIM 4

Clear all animations (context: UINT (1=reset animations, O=leave animations at current state).

#define EVENT_VESSEL_DELANIM 5

Delete an animation (context: animation index).

#define EVENT_VESSEL_NEWANIM 6

Create a new animation (context: animation index).

#define EVENT_VESSEL_MESHOFS 7

Shift a mesh (context: mesh index).

#define EVENT_VESSEL_MODMESHGROUP 8§
A mesh group has been modified.

7.23 Navigation mode identifiers
7.23.1 Detailed Description

These constants are used to refer to the built-in "auto-navigation" modes, mostly for mainaining specific
vessel attitudes via use of RCS thrusters.

See also:

VESSEL::ActivateNavmode, VESSEL::DeactivateNavmode, VESSEL::ToggleNavmode, VES-
SEL::GetNavmodeState

Defines

#define NAVMODE_KILLROT 1

"Kill rotation" mode

#define NAVMODE_HLEVEL 2

"Hold level with horizon" mode

#define NAVMODE_PROGRADE 3

"Prograde" mode

#define NAVMODE_RETROGRADE 4

"Retrograde" mode

¢ #define NAVMODE_NORMAL 5

"Normal to orbital plane" mode

#define NAVMODE_ANTINORMAL 6

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.24 Manual control mode identifiers

37

"Anti-normal to orbital plane" mode

e #define NAVMODE_HOLDALT 7
"Hold altitude" mode

7.24 Manual control mode identifiers

7.24.1 Detailed Description

Constants used to identify attitude control modes for manual input.

See also:

VESSEL::GetManualControlLevel

Defines

¢ #define MANCTRL_ATTMODE 0

current attitude mode

#define MANCTRL_REVMODE 1

reverse of current attitude mode

#define MANCTRL_ROTMODE 2

rotational attitude modes only

#define MANCTRL_LINMODE 3

linear attitude modes only

#define MANCTRL_ANYMODE 4

rotational and linear modes

7.25 Manual control device identifiers
7.25.1 Detailed Description
Constants used to identify manual input devices.

See also:

VESSEL::GetManualControlLevel

Defines

¢ #define MANCTRL_KEYBOARD 0
keyboard input

¢ #define MANCTRL_JOYSTICK 1

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.26 RCS mode identifiers

38

Jjoystick input

* #define MANCTRL_ANYDEVICE 2

input from any device

7.26 RCS mode identifiers

7.26.1 Detailed Description

These constants are used to define the operation mode of the reaction control system (RCS) of a vessel.

See also:

VESSEL::GetAttitudeMode, VESSEL::SetAttitudeMode

Defines

¢ #define RCS_NONE 0
None (RCS off).

e #define RCS_ROT 1

Rotational mode.

e #define RCS_LIN 2

Linear (translational) mode.

7.27 HUD mode identifiers

7.27.1 Detailed Description

These constants are used to refer to the built-in HUD (head-up display) modes.

Defines

e #define HUD_NONE 0
No mode (turn HUD off).

e #define HUD_ORBIT 1
Orbit HUD mode.

e #define HUD_SURFACE 2
Surface HUD mode.

¢ #define HUD_DOCKING 3
Docking HUD mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.28 MFD mode identifiers

7.28 MFD mode identifiers
7.28.1 Detailed Description

These constants are used to refer to the built-in MFD (multifunctional display) modes.

Defines

e #define MFD_REFRESHBUTTONS -1
Refresh MFD buttons.

 #define MFD_NONE 0
No mode (turn MFD off).

e #define MFD_ORBIT 1
Orbit MFD mode.

¢ #define MFD_SURFACE 2
Surface MFD mode.

¢ #define MFD_MAP 3
Map MFD mode.

e #define MFD_HSI 4

HSI (horizontal situation indicator) MFD mode.

* #define MFD_LANDING 5
VTOL support MFD mode.

¢ #define MFD_DOCKING 6
Docking support MFD mode.

e #define MFD_OPLANEALIGN 7
Orbital plane alignment MFD mode.

* #define MFD_OSYNC 8
Orbit synchronisation MFD mode.

e #define MFD_TRANSFER 9
Transfer orbit MFD mode.

e #define MFD_COMMS 10

Communications MFD mode.

¢ #define MFD_USERTYPE 64
User-defined MFD mode.

e #define BUILTIN_MFD_MODES 10
Number of built-in MFD modes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.29 MFD identifiers

7.29 MFD identifiers
Defines

¢ #define MAXMFD 10
Max. number of MFD displays per panel.

* #define MFD_LEFT 0
Left default MFD display.

¢ #define MFD_RIGHT 1
Right default MFD display.

e #define MFD_USERI1 2
User-defined MFD display 1.

¢ #define MFD_USER?2 3
User-defined MFD display 2.

¢ #define MFD_USER3 4
User-defined MFD display 3.

¢ #define MFD_USER4 5
User-defined MFD display 4.

* #define MFD_USERS 6
User-defined MFD display 5.

¢ #define MFD_USERG6 7
User-defined MFD display 6.

e #define MFD_USER7 8
User-defined MFD display 7.

¢ #define MFD_USERS 9
User-defined MFD display 8.

7.30 Panel neighbour identifiers

7.30.1 Detailed Description

See also:

oapiSwitchPanel

Defines

¢ #define PANEL_LEFT 0
left neighbour

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.31 Panel redraw event identifiers 41

¢ #define PANEL_RIGHT 1
right neighbour

* #define PANEL_UP 2

above neighbour

* #define PANEL_DOWN 3

below neighbour

7.31 Panel redraw event identifiers
7.31.1 Detailed Description

These constants are used to refer to cockpit area redraw event types during panel area registration and by
the event handlers.

Defines

* #define PANEL_REDRAW_NEVER 0x00

Don’t generate redraw events.

#define PANEL_REDRAW_ALWAYS 0x01

Generate event at each frame.

#define PANEL_REDRAW_MOUSE 0x02

Generate event on mouse event.

#define PANEL_REDRAW_INIT 0x03

Initialisation event.

#define PANEL_REDRAW_USER 0x04

User-generated event.

7.32 Mouse event identifiers
7.32.1 Detailed Description

These constants are used to refer to cockpit mouse event types during panel area registration and by the
event handlers.

Note:

PANEL_MOUSE_IGNORE and PANEL_MOUSE_ONREPLAY are used only during area registra-
tion. Areas with the PANEL_MOUSE_IGNORE attribute never generate mouse events. Areas with
the PANEL_MOUSE_ONREPLAY attribute generate mouse events also during replay sessions (off
by default).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.33 Generic vessel message identifiers

42

Defines

#define PANEL_MOUSE_IGNORE 0x00

Don’t generate mouse events.

¢ #define PANEL_MOUSE_LBDOWN 0x01

Left button down event.

¢ #define PANEL_MOUSE_RBDOWN 0x02

Right button down event.

* #define PANEL_MOUSE_LBUP 0x04

Left button release event.

* #define PANEL_MOUSE_RBUP 0x08

Right button release event.

* #define PANEL_MOUSE_LBPRESSED 0x10

Left button down (continuous).

¢ #define PANEL_MOUSE_RBPRESSED 0x20

Right button down (continuous).

* #define PANEL_MOUSE_DOWN 0x03

Composite down event.

¢ #define PANEL_MOUSE_UP 0x0C

Composite release event.

* #define PANEL_MOUSE_PRESSED 0x30

Composite down (continous).

* #define PANEL_MOUSE_ONREPLAY 0x40

Create mouse events during replay.

7.33 Generic vessel message identifiers

Defines

* #define VMSG_LUAINTERPRETER 0x0001

initialise Lua interpreter

* #define VMSG_LUAINSTANCE 0x0002

create Lua vessel instance

* #define VMSG_USER 0x1000

base index for user-defined messages

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.34 Vessel mesh visibility flags

43

7.34 Vessel mesh visibility flags
7.34.1 Detailed Description
These constants determine the visibility of vessel meshes in specific camera modes.

See also:

VESSEL::SetMeshVisibilityMode, VESSEL::GetMeshVisibilityMode

Defines

e #define MESHVIS_NEVER 0x00

Mesh is never visible.

#define MESHVIS_EXTERNAL 0x01

Mesh is visible in external views.

#define MESHVIS_COCKPIT 0x02

Mesh is visible in internal (cockpit) views.

#define MESHVIS_ALWAYS (MESHVIS_EXTERNAL|MESHVIS_COCKPIT)

Mesh is always visible.

e #define MESHVIS_VC 0x04

Mesh is only visible in virtual cockpit internal views.

* #define MESHVIS_EXTPASS 0x10

Visibility modifier: render mesh during external pass, even for internal views.

7.35 Navigation radio transmitter types

7.35.1 Detailed Description

See also:

oapiGetNavType

Defines

¢ #define TRANSMITTER_NONE 0
* #define TRANSMITTER_VOR 1
#define TRANSMITTER_VTOL 2
#define TRANSMITTER_ILS 3
#define TRANSMITTER_IDS 4
#define TRANSMITTER_XPDR 5

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.36 Object parameter flags 44

7.36 Object parameter flags
7.36.1 Detailed Description

Used by oapiGetObjectParam()

Defines

¢ #define OBJPRM_PLANET_SURFACEMAXLEVEL 0x0001

Max. resolution level for planet surface rendering. (Parameter type: DWORD).

¢ #define OBJPRM_PLANET_SURFACERIPPLE 0x0002

Flag for ripple effect on reflective surfaces (Parameter type: bool).

¢ #define OBJPRM_PLANET_HAZEEXTENT 0x0003

Bleed-in factor of atmospheric haze into planet disc. (Parameter type: double; range: 0-0.9).

* #define OBJPRM_PLANET_HAZEDENSITY 0x0004

Density at which the horizon haze is rendered (basic density is calculated from atmospheric density) Default:
1.0. (Parameter type: double).

¢ #define OBJPRM_PLANET_HAZESHIFT 0x0005

¢ #define OBJPRM_PLANET _HAZECOLOUR 0x0006

¢ #define OBJPRM_PLANET_FOGPARAM 0x0007

¢ #define OBJPRM_PLANET_SHADOWCOLOUR 0x0008

¢ #define OBJPRM_PLANET_HASCLOUDS 0x0009

¢ #define OBJPRM_PLANET_CLOUDALT 0x000A

¢ #define OBJPRM_PLANET_CLOUDROTATION 0x000B

¢ #define OBJPRM_PLANET_CLOUDSHADOWCOL 0x000C

¢ #define OBJPRM_PLANET_CLOUDMICROTEX 0x000D

¢ #define OBJPRM_PLANET_CLOUDMICROALTMIN 0x000E
¢ #define OBJPRM_PLANET_CLOUDMICROALTMAX 0x000F
¢ #define OBJPRM_PLANET_HASRINGS 0x0010

¢ #define OBJPRM_PLANET_RINGMINRAD 0x0011

¢ #define OBJPRM_PLANET_RINGMAXRAD 0x0012

¢ #define OBJPRM_PLANET_ATTENUATIONALT 0x0013

Altitude [m] up to which an atmosphere attenuates light cast from the sun on a spacecraft. (Parameter type:
double).

7.37 Orbiter API interface methods
7.37.1 Detailed Description
The functions in this section provide a general framework to retrieve and set Orbiter simulation parameters

from an addon module. For a linear list of oapi functions, constants and enumerations, see OrbiterAPLh.
For vessel-specific parameters see also the VESSEL class.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods

Modules

* Object access functions

¢ Vessel creation and destruction
* Body functions

¢ Vessel functions

¢ Coordinate transformations

¢ Camera functions

* Functions for planetary bodies

¢ Surface base interface

¢ Time functions

» Navigation radio transmitter functions
* Script interpreter functions

¢ Visual and mesh functions

* HUD, MFD and panel functions
¢ Drawing support functions

¢ Surface functions

¢ Custom MFD mode definition

* Virtual cockpit functions

e Customisation - custom menu, dialogs
¢ File IO Functions

» Utility functions

 User input functions

¢ Onscreen annotations

¢ Obsolete functions

Functions

OAPIFUNC bool oapiRegisterGraphicsClient (oapi::GraphicsClient xgc)

Register graphics client class instance.

OAPIFUNC int oapiGetOrbiterVersion ()

Returns the version number of the Orbiter core system.

* int oapiGetModuleVersion ()

Returns the API version number against which the module was linked.

OAPIFUNC HINSTANCE oapiGetOrbiterInstance ()

Returns the instance handle for the running Orbiter application.

OAPIFUNC const char * oapiGetCmdLine ()

Returns a pointer to the command line with which Orbiter was invoked.

OAPIFUNC void oapiGetViewportSize (DWORD xw, DWORD xh, DWORD xbpp=0)

Returns the dimensions of the render viewport.

OAPIFUNC double oapiGetPanelScale ()

Returns the scaling factor for 2-D instrument panels.

OAPIFUNC void oapiRegisterModule (oapi::Module xmodule)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods 46

Register a module interface class instance.

* OAPIFUNC char * oapiDebugString ()

Returns a pointer to a string which will be displayed in the lower left corner of the viewport.

* OAPIFUNC void oapiGetBarycentre (OBJHANDLE hObj, VECTOR3 xbary)

Returns the global position of the barycentre of a complete planetary system or a single planet-moons
system.

* OAPIFUNC SURFHANDLE oapiRegisterExhaustTexture (char xname)

Request a custom texture for vessel exhaust rendering.

* OAPIFUNC SURFHANDLE oapiRegisterReentryTexture (char *name)

Request a custom texture for vessel reentry flame rendering.

* OAPIFUNC SURFHANDLE oapiRegisterParticleTexture (char *name)
¢ OAPIFUNC void oapiSetShowGrapplePoints (bool show)

* OAPIFUNC bool oapiGetShowGrapplePoints ()

* OAPIFUNC double oapiGetlnducedDrag (double cl, double A, double e)

Aerodynamics helper function.

* OAPIFUNC double oapiGetWaveDrag (double M, double M1, double M2, double M3, double
cmax)

Aerodynamics helper function.

7.37.2 Function Documentation

7.37.2.1 OAPIFUNC charx oapiDebugString ()

Returns a pointer to a string which will be displayed in the lower left corner of the viewport.

Returns:

Pointer to debugging string.

Note:

This function should only be used for debugging purposes. Do not use it in published modules!

The returned pointer refers to a global char[256] in the Orbiter core. It is the responsibility of the
module to ensure that no overflow occurs.

If the string is written to more than once per time step (either within a single module or by multiple
modules) the last state before rendering will be displayed.

A typical use would be:

sprintf (oapiDebugString(), "my value is %£f", myvalue);

7.37.2.2 OAPIFUNC void oapiGetBarycentre (OBJHANDLE hObj, VECTORS3 x bary)

Returns the global position of the barycentre of a complete planetary system or a single planet-moons
system.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods 47

Parameters:

hObj celestial body handle

bary pointer to vector receiving barycentre data

Note:

The barycentre is the centre of mass of a distribution of objects. In this case, all involved celestial
bodies are considered point masses, and the barycentre is defined as

-1
g = <§ mi> E m;r;
i i

hObj must be the handle of a celestial body.

The summation involves the body itself and all its secondaries, e.g. a planet and its moons.
The barycentre of a star (Oth level object) is always the origin (0,0,0).

The barycentre of an object without associated secondaries is identical to its position.

7.37.2.3 OAPIFUNC const charx oapiGetCmdLine ()

Returns a pointer to the command line with which Orbiter was invoked.

Returns:

Pointer to orbiter command line string.

Note:

This method can be used to pass custom parameters to a module directly from the orbiter command
line.

7.37.2.4 OAPIFUNC double oapiGetInducedDrag (double cl, double A, double ¢)
Aerodynamics helper function.

This is a helper function which is useful when implementing the callback function calculating the aero-
dynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It computes the lift-induced component
cp,j of the drag coefficient as a function of lift coefficient c; , wing aspect ratio A, and wing efficiency
factor e, as
Cpi =
mAe

Parameters:

cl lift coefficient
A wing aspect ratio

e wing efficiency factor

Returns:

Induced drag coefficient cpy ;

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods 48

Note:

The full drag coefficient required by the airfoil callback function consists of several components:
profile drag cpy ¢ , induced drag cpy ; and wave drag ¢D,w

Cp = Cp,etCpitChuw

where cp ¢ is caused by skin friction and pressure components, and cpy y, is a result of the shock wave
and flow separation in transonic and supersonic flight.

The wing aspect ratio is defined as b2 /S, where b is the wing span, and S is the wing area.

The efficiency factor depends on the wing shape. The most efficient wings are elliptical, with e = 1.
For all other shapes, e < 1.

This function can be interpreted slightly differently by moving the angle of attack-dependency of the
profile drag into the induced drag component:

CD = cD,O + cD,i + CDA,w

where cpy (j is the zero-lift component of the profile drag, and ¢/, , is a modified induced drag obtained
by replacing the shape factor e with the Oswald efficiency factor. See Programmer’s Guide for more
details.

7.37.2.5 int oapiGetModuleVersion ()

Returns the API version number against which the module was linked.

Returns:

module version number

Note:

Orbiter version numbers are derived from the build date. The version number is constructed as
(year100)%10000 + month*100 + day, resulting in a decimal version number of the form YYMMDD

See also:

oapiGetOrbiterVersion

7.37.2.6 OAPIFUNC HINSTANCE oapiGetOrbiterInstance ()

Returns the instance handle for the running Orbiter application.

Returns:

Orbiter instance handle

7.37.2.7 OAPIFUNC int oapiGetOrbiterVersion ()

Returns the version number of the Orbiter core system.

Returns:

version number

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods 49

Note:
Orbiter version numbers are derived from the build date. The version number is constructed as
(year100)+10000 + monthx100 + day, resulting in a decimal version number of the form YYMMDD
See also:

oapiGetModuleVersion

7.37.2.8 OAPIFUNC double oapiGetPanelScale ()

Returns the scaling factor for 2-D instrument panels.

Returns:

Panel scaling factor (>0)

Note:

This function returns the user-defined panel scaling factor.
The default scaling factor is 1. Values > 1 cause panels to be expanded, values < 1 cause panels to be
shrunk.

7.37.2.9 OAPIFUNC void oapiGetViewportSize (DWORD *x w, DWORD * h, DWORD x* bpp = 0)

Returns the dimensions of the render viewport.

Parameters:

w pointer to viewport width [pixel]
h pointer to viewport height [pixel]
bpp pointer to colour depth [bits per pixel]

Note:

This function writes the viewport width, height and (optionally) colour depth values into the variables
pointed to by the function parameters.

For fullscreen modes, the viewport size corresponds to the fullscreen resolution. For windowed modes,
the viewport size corresponds to the client area of the render window.

7.37.2.10 OAPIFUNC double oapiGetWaveDrag (double M, double M1, double M2, double M3,
double cmax)

Aerodynamics helper function.

This is a helper function which is useful when implementing the callback function calculating the aero-
dynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It uses a simple model to compute the
wave drag component of the drag coefficient, ¢p ,,, . Wave drag significantly affects the vessel drag around
Mach 1, and falls off towards lower and higher alrspeeds This function uses the following model:

0 ifM < M,

Cm A ifM, < M < M,

Dw =93 ¢, ifMy < M < Mg
(MQ 1)1/2

Cm, W ifM > M3

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.37 Orbiter API interface methods 50

where 0 < M <Mp <1 <M 3 are characteristic Mach numbers, and cy; is the maximum wave drag
coefficient at transonic speeds.

Parameters:

M current Mach number

M1 characteristic Mach number
M2 characteristic Mach number
M3 characteristic Mach number

cmax maximum wave drag coefficient ¢y

Returns:

Wave drag coefficient cp ,,

Note:

The model underlying this function assumes a piecewise linear wave drag profile for M < M3 , and a

decay with (M 2 -1)'1/ 2forM > M 3 . If this profile is not suitable for a given airfoil, the programmer
must implement wave drag manually.
See also:

oapiGetIlnducedDrag, VESSEL::CreateAirfoil

7.37.2.11 OAPIFUNC SURFHANDLE oapiRegisterExhaustTexture (char * name)

Request a custom texture for vessel exhaust rendering.

Parameters:

name exhaust texture file name (without path and extension)

Returns:

texture handle

Note:

The exhaust texture must be stored in DDS format in Orbiter’s default texture directory.
If the texture is not found the function returns NULL.
The texture can be used to define custom textures in VESSEL::AddExhaust.

See also:

oapiRegisterReentryTexture, oapiRegisterParticleTexture

7.37.2.12 OAPIFUNC bool oapiRegisterGraphicsClient (oapi::GraphicsClient x gc)
Register graphics client class instance.

Graphics clients plugins should use this function to register the class instance instead of oapiRegisterMod-
ule.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 51

Parameters:

gc pointer to graphics client instance

Returns:

true if client was registered successfully

7.37.2.13 OAPIFUNC void oapiRegisterModule (oapi::Module * module)
Register a module interface class instance.

Plugin modules that use an interface class instance derived from oapi::Module must register it with this
function during module initialisation (typically in the body of InitModule).

Parameters:

module pointer to the interface class instance

Note:

The DLL should not delete the module instance in ExitModule. Orbiter destroys all registered modules
automatically when required.

7.37.2.14 OAPIFUNC SURFHANDLE oapiRegisterReentryTexture (char x name)

Request a custom texture for vessel reentry flame rendering.

Parameters:

name reentry texture file name (without path and extension)

Returns:

texture handle

Note:

The exhaust texture must be stored in DDS format in Orbiter’s default texture directory.
If the texture is not found the function returns NULL.
The texture can be used to define custom textures in VESSEL::SetReentryTexture().

See also:

oapiRegisterExhaustTexture, oapiRegisterParticleTexture

7.38 Object access functions

Functions

* OAPIFUNC OBJHANDLE oapiGetObjectByName (char *name)

Returns a handle for a named simulation object.

* OAPIFUNC OBJHANDLE oapiGetObjectByIndex (int index)

Returns a handle for an indexed simulation object.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38

Object access functions

52

OAPIFUNC DWORD oapiGetObjectCount ()

Returns the number of objects currently present in the simulation.

OAPIFUNC int oapiGetObjectType (OBJHANDLE hObj)
Returns the type of an object identified by its handle.

OAPIFUNC const void * oapiGetObjectParam (OBJHANDLE hObj, DWORD paramtype)

Returns an object-specific configuration parameter.

OAPIFUNC OBJHANDLE oapiGetVesselByName (char *name)

Returns the handle of a vessel identified by its name.

OAPIFUNC OBJHANDLE oapiGetVesselByIndex (int index)

Returns the handle of a vessel identified by its reference index.

OAPIFUNC DWORD oapiGetVesselCount ()

Returns the number of vessels currently present in the simulation.

OAPIFUNC bool oapilsVessel (OBJHANDLE hVessel)
Checks if the specified handle is a valid vessel handle.

OAPIFUNC OBJHANDLE oapiGetGbodyByName (char xname)

Returns the handle of a celestial body (sun, planet or moon) identified by its name.

OAPIFUNC OBJHANDLE oapiGetGbodyByIndex (int index)

Returns the handle of a celestial body (sun, planet or moon) indentified by its list index.

OAPIFUNC DWORD oapiGetGbodyCount ()

Returns the number of celestial bodies (sun, planets and moons) currently present in the simulation.

OAPIFUNC OBJHANDLE oapiGetBaseByName (OBJHANDLE hPlanet, char *xname)

Returns the handle of a surface base on a given planet or moon.

OAPIFUNC OBJHANDLE oapiGetBaseByIndex (OBJHANDLE hPlanet, int index)

Returns the handle of a surface base on a planet or moon given by its list index.

OAPIFUNC DWORD oapiGetBaseCount (OBJHANDLE hPlanet)

Returns the number of surface bases defined for a given planet.

OAPIFUNC void oapiGetObjectName (OBJHANDLE hObj, char *name, int n)

Returns the name of an object.

OAPIFUNC OBJHANDLE oapiGetFocusObject ()

Returns the handle for the current focus object.

OAPIFUNC OBJHANDLE oapiSetFocusObject (OBJHANDLE hVessel)

Switches the input focus to a different vessel object.

OAPIFUNC VESSEL x* oapiGetVessellnterface (OBJHANDLE hVessel)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 53

Returns a VESSEL class instance for a vessel.

* OAPIFUNC VESSEL x* oapiGetFocusInterface ()

Returns the VESSEL class instance for the current focus object.

* OAPIFUNC CELBODY x oapiGetCelbodyInterface (OBJHANDLE hBody)
Returns a CELBODY interface instance for a celestial body, if available.

7.38.1 Function Documentation
7.38.1.1 OAPIFUNC OBJHANDLE oapiGetBaseByIndex (OBJHANDLE hPlanet, int index)
Returns the handle of a surface base on a planet or moon given by its list index.

Parameters:

hPlanet handle of the planet or moon on which the base is located
index list index (0 <= index < oapiGetBaseCount(hPlanet))

Returns:

Base object handle, or NULL if index out of range.

See also:

oapiGetBaseCount, oapiGetBaseByName, oapiGetBasePlanet

7.38.1.2 OAPIFUNC OBJHANDLE oapiGetBaseByName (OBJHANDLE #hPlanet, char x name)

Returns the handle of a surface base on a given planet or moon.

Parameters:

hPlanet handle of planet or moon on which the base is located

name base name (not case-sensitive)

Returns:

Base object handle, or NULL if base was not found.

See also:

oapiGetBaseByIndex, oapiGetBasePlanet

7.38.1.3 OAPIFUNC DWORD oapiGetBaseCount (OBJHANDLE hPlanet)

Returns the number of surface bases defined for a given planet.

Parameters:

hPlanet handle of a planet or moon

Returns:

Number of surface bases (>=0).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 54

7.38.1.4 OAPIFUNC CELBODY x oapiGetCelbodyInterface (OBJHANDLE hBody)

Returns a CELBODY interface instance for a celestial body, if available.

Parameters:

hBody handle of a celestial body

Returns:
Pointer to the CELBODY class instance for the body, or NULL if the body is not controlled by an
external module.

Note:

hBody must be a valid handle for a celestial body (star, planet, moon, etc.), e.g. as obtained from
oapiGetGbodyByName. Passing a handle of any other type will result in undefined behaviour.

Only celestial bodies controlled by external plugin modules have access to a CELBODY instance.
Celestial bodies that are updated internally by Orbiter (e.g. using 2-body orbital elements, or dynamic
updates) return NULL here.

7.38.1.5 OAPIFUNC VESSEL:x* oapiGetFocusInterface ()

Returns the VESSEL class instance for the current focus object.

Returns:

Pointer to an instance of the VESSEL class or a derived class, providing an interface for access to the
current focus object.

7.38.1.6 OAPIFUNC OBJHANDLE oapiGetFocusObject ()

Returns the handle for the current focus object.

Returns:

Focus object handle

Note:
The focus object is the user-controlled vessel which receives keyboard and joystick input.
This function returns a valid vessel handle during a simulation session (between
oapi::Module::clbkSimulationStart() and oapi::Module::clbkSimulationEnd())

See also:

oapiSetFocusObject

7.38.1.7 OAPIFUNC OBJHANDLE oapiGetGbodyBylIndex (int index)

Returns the handle of a celestial body (sun, planet or moon) indentified by its list index.

Parameters:

index object index (0 <= index < oapiGetGbodyCount())

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 55

Returns:

Object handle, or NUL if index out of range.

See also:

oapiGetGbodyCount, oapiGetGbodyByName

7.38.1.8 OAPIFUNC OBJHANDLE oapiGetGbodyByName (char « name)

Returns the handle of a celestial body (sun, planet or moon) identified by its name.

Parameters:

name celestial object name (not case-sensitive)

Returns:

Object handle, or NULL if the object could not be found.

Note:

Celestial bodies in orbiter are objects that act as sources for gravitational fields.

See also:

oapiGetGbodyBylIndex

7.38.1.9 OAPIFUNC DWORD oapiGetGbodyCount ()

Returns the number of celestial bodies (sun, planets and moons) currently present in the simulation.

Returns:

Number of objects.

7.38.1.10 OAPIFUNC OBJHANDLE oapiGetObjectByIndex (int index)

Returns a handle for an indexed simulation object.

Parameters:

index object index (0 <= index < oapiGetObjectCount())

Returns:

object handle

Note:

Objects can be created and deleted during a simulation session. Therefore the list index of a given
object and the range of valid list indices can change.
A typical use for accessing objects by index is in a loop running over all present objects:

for (int i = 0; 1 < ocapiGetObjectCount (); i++) {
OBJHANDLE hObj = ocapiGetObjectByIndex (i);
// do something with hObj

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 56

See also:

oapiGetObjectByName, oapiGetObjectType

7.38.1.11 OAPIFUNC OBJHANDLE oapiGetObjectByName (char * name)

Returns a handle for a named simulation object.

Parameters:

name object name

Returns:

object handle

Note:

Objects can be vessels, planets, moons or suns.

A return value of NULL indicates that the object was not found.

The name is not case-sensitive ("Jupiter" will also match "jupiter" or "JUPITER").

Surface base handles cannot be retrieved with this method, because a planet handle is required in
addition to the base name to uniquely identify the base. Use oapiGetBaseByName() or oapiGetBase-
BylIndex() instead.

See also:

oapiGetObjectByIndex, oapiGetVesselByName, oapiGetGbodyByName, oapiGetBaseByName,
oapiGetObjectType

7.38.1.12 OAPIFUNC DWORD oapiGetObjectCount ()

Returns the number of objects currently present in the simulation.

Returns:

object count

See also:

oapiGetObjectBylndex, oapiGetObjectType

7.38.1.13 OAPIFUNC void oapiGetObjectName (OBJHANDLE hObj, char x name, int n)

Returns the name of an object.

Parameters:

hObj object handle
name pointer to character array to receive object name

n length of character array

Note:

name must be allocated to at least size n by the calling function.
If the string buffer is not long enough to hold the object name, the name is truncated.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 57

7.38.1.14 OAPIFUNC const void* oapiGetObjectParam (OBJHANDLE 1 0bj, DWORD paramtype)

Returns an object-specific configuration parameter.

Parameters:

hObj object handle

paramtype parameter identifier (see Object parameter flags)

Returns:

pointer to parameter value

Note:

This function returns the current value of a configuration parameter for a given object (e.g. planet).
The type of the return value depends on the parameter. The generic void pointer must be cast into the
appropriate parameter type. Example:

bool *bClouds = (boolx)oapiGetObjectParam (hObj, OBJPRM_PLANET_HASCLOUDS) ;

See also:

Object parameter flags

7.38.1.15 OAPIFUNC int oapiGetObjectType (OBJHANDLE hObyj)
Returns the type of an object identified by its handle.

Parameters:

hObj object handle

Returns:

Integer code identifying the vessel type.

Note:
The following type identifiers are currently supported:
OBJTP_INVALID invalid object handle
OBJTP_GENERIC generic object (not currently used)
OBJTP_CBODY generic celestial body (not currently used
OBJTP_STAR star
OBJTP_PLANET planet (used for all celestial bodies that are not
stars, including moons, comets, etc.)

OBJTP_VESSEL vessel (spacecraft, space stations, etc.)
OBJTP_SURFBASE surface base (spaceport)

See also:

oapiGetObjectParam, oapiGetObjectCount

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 58

7.38.1.16 OAPIFUNC OBJHANDLE oapiGetVesselByIndex (int index)

Returns the handle of a vessel identified by its reference index.

Parameters:

index object index (0 <= index < oapiGetVesselCount())

Returns:

Vessel object handle, or NULL if index out of range.

Note:

The index of a vessel can change during the simulation if vessels are created or destroyed. A typical
use for oapiGetVesselByIndex() would be to implement a loop over all vessels:
for (i = 0; 1 < oapiGetVesselCount (); i++) {
OBJHANDLE hVessel = oapiGetVesselByIndex (1i);

// do something with hVessel
}

See also:

oapiGetVesselByName, oapiGetVesselCount

7.38.1.17 OAPIFUNC OBJHANDLE oapiGetVesselByName (char x name)

Returns the handle of a vessel identified by its name.

Parameters:

name vessel name (not case-sensitive)

Returns:

Vessel object handle, or NULL if the vessel could not be found.

See also:

oapiGetVesselByIndex

7.38.1.18 OAPIFUNC DWORD oapiGetVessel Count ()

Returns the number of vessels currently present in the simulation.

Returns:

Vessel count.

See also:

oapiGetVesselByIndex

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.38 Object access functions 59

7.38.1.19 OAPIFUNC VESSEL:x oapiGetVessellnterface (OBJHANDLE hVessel)

Returns a VESSEL class instance for a vessel.

Parameters:

hVessel vessel handle

Returns:

Pointer to an instance of the VESSEL class or a derived class, providing an interface for access to the
specified vessel.

7.38.1.20 OAPIFUNC bool oapilsVessel (OBJHANDLE #Vessel)
Checks if the specified handle is a valid vessel handle.

Parameters:

hVessel handle to be tested

Returns:

true if hVessel is a valid vessel handle, false otherwise.

Note:

This function can be used to test if a previously obtained vessel handle is still valid. A handle becomes
invalid if the associated vessel is deleted.

An alternative to using oapilsVessel() is monitoring vessel deletions by implementing the
oapi::Module::clbkDelete Vessel() callback function of the module instance.

See also:

oapiGetObjectType

7.38.1.21 OAPIFUNC OBJHANDLE oapiSetFocusObject (OBJHANDLE hVessel)

Switches the input focus to a different vessel object.

Parameters:

hVessel handle of vessel to receive input focus

Returns:

Handle of vessel losing focus, or NULL if focus did not change.

Note:

hVessel must refer to a vessel object. Trying to set the focus to a different object type will fail.

See also:

oapiGetFocusObject

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.39 Vessel creation and destruction 60

7.39 Vessel creation and destruction

Functions

* OAPIFUNC OBJHANDLE oapiCreateVessel (const char ¥name, const char xclassname, const VES-
SELSTATUS &status)

Creates a new vessel.

¢ OAPIFUNC OBJHANDLE oapiCreateVesselEx (const char xname, const char xclassname, const
void xstatus)

Creates a new vessel via a VESSELSTATUSx (x >= 2) interface.

* OAPIFUNC bool oapiDelete Vessel (OBJHANDLE hVessel, OBJHANDLE hAlternativeCameraTar-
get=0)

Deletes an existing vessel.

7.39.1 Function Documentation
7.39.1.1 OAPIFUNC OBJHANDLE oapiCreateVessel (const char x name, const char * classname,
const VESSELSTATUS & status)

Creates a new vessel.

Parameters:

name vessel name
classname vessel class name

Status initial vessel status

Returns:

Handle of the new vessel.

Note:

A configuration file for the specified vessel class must exist in the Config or Config/Vessels subdirec-
tory.
oapiCreateVesselEx is an extended version of this function operating on a more versatile status struc-
ture.

See also:

oapiCreateVesselEx, VESSELSTATUS

7.39.1.2 OAPIFUNC OBJHANDLE oapiCreateVesselEx (const char * name, const char * class-
name, const void * status)

Creates a new vessel via a VESSELSTATUSx (x >= 2) interface.

Parameters:

name vessel name

classname vessel class name

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.40 Body functions 61

status pointer to a VESSELSTATUSKX structure

Returns:

Handle of the new vessel.

Note:

A configuration file for the specified vessel class must exist in the Config or the Config\ Vessels folder,
or a subfolder. If the config file is located in a subfolder, the relative path must be included in the
classname parameter.
status must point to a VESSELSTATUSKX structure. Currently only VESSELSTATUS? is supported,
but future Orbiter versions may add new interfaces.
During the vessel creation process Orbiter will call the module’s VESSEL?2::clbkSetStateEx callback
function if it exists.

See also:

oapiCreateVessel, VESSEL2::clbkSetStateEx, VESSELSTATUS2

7.39.1.3 OAPIFUNC bool oapiDeleteVessel (OBJHANDLE #hVessel, OBJHANDLE hAlternative-
CameraTlarget = 0)

Deletes an existing vessel.

Parameters:

hVessel vessel handle

hAlternativeCameraTarget optional new camera target

Returns:

true if vessel could be deleted.

Note:

If the current focus vessel is deleted, Orbiter will switch focus to the closest focus-enabled vessel. If
the last focus-enabled vessel is deleted, Orbiter returns to the launchpad.

If the current camera target is deleted, a new camera target can be provided in hAlternativeCameraTar-
get. If not specified, the focus object is used as default camera target.

The actual vessel destruction does not occur until the end of the current frame. Self-destruct calls are
therefore permitted.

A vessel will undock all its docking ports before being destructed.

See also:

oapiCreateVessel, oapiCreate VesselEx
7.40 Body functions

Functions

* OAPIFUNC double oapiGetSize (OBJHANDLE hObj)

Returns the size (mean radius) of an object.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.40 Body functions 62

OAPIFUNC double oapiGetMass (OBJHANDLE hObj)

Returns the mass of an object. For vessels, this is the total mass, including current fuel mass.

OAPIFUNC void oapiGetGlobalPos (OBJHANDLE hObj, VECTOR3 xpos)

Returns the position of an object in the global reference frame.

OAPIFUNC void oapiGetGlobal Vel (OBJHANDLE hObj, VECTOR3 x*vel)

Returns the velocity of an object in the global reference frame.

OAPIFUNC void oapiGetRelativePos (OBJHANDLE hObj, OBJHANDLE hRef, VECTOR3
*pOSs)

Returns the distance vector from hRef to hObj in the ecliptic reference frame.

OAPIFUNC void oapiGetRelative Vel (OBJHANDLE hObj, OBJHANDLE hRef, VECTOR3 *vel)

Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference frame.

7.40.1 Function Documentation

7.40.1.1 OAPIFUNC void oapiGetGlobalPos (OBJHANDLE h0bj, VECTORS3 x* pos)

Returns the position of an object in the global reference frame.

Parameters:

hObj object handle

pos pointer to vector receiving coordinates

Note:

The global reference frame is the heliocentric ecliptic system at ecliptic and equinox of J2000.
Units are meters.

See also:

oapiGetBarycentre, oapiGetGlobal Vel

7.40.1.2 OAPIFUNC void oapiGetGlobalVel (OBJHANDLE rObj, VECTORS x vel)

Returns the velocity of an object in the global reference frame.

Parameters:

hObj object handle

vel pointer to vector receiving velocity data

Note:

The global reference frame is the heliocentric ecliptic system at ecliptic and equinox of J2000.
Units are meters/second.

See also:

oapiGetBarycentre, oapiGetGlobalPos

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.40 Body functions 63

7.40.1.3 OAPIFUNC double oapiGetMass (OBJHANDLE hkObj)

Returns the mass of an object. For vessels, this is the total mass, including current fuel mass.

Parameters:

hObj object handle

Returns:

object mass [kg]

See also:

oapiGetMaxFuelMass, oapiGetEmptyMass

7.40.1.4 OAPIFUNC void oapiGetRelativePos (OBJHANDLE h0Obj, OBJHANDLE hRef, VEC-
TORS3 x pos)

Returns the distance vector from hRef to hObj in the ecliptic reference frame.

Parameters:

hObj object handle
hRef reference object handle

pos pointer to vector receiving distance data

Note:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

See also:

oapiGetBarycentre, oapiGetRelative Vel

7.40.1.5 OAPIFUNC void oapiGetRelativeVel (OBJHANDLE hObj, OBJHANDLE hRef, VEC-
TOR3 x vel)

Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference frame.

Parameters:

hObj object handle
hRef reference object handle

vel pointer to vector receiving velocity difference data

Note:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

See also:

oapiGetBarycentre, oapiGetRelativePos

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions

64

7.40.1.6 OAPIFUNC double oapiGetSize (OBJHANDLE rObj)

Returns the size (mean radius) of an object.

Parameters:

hObj object handle

Returns:

Object size (mean radius) in meter.

7.41 Vessel functions

Functions

* OAPIFUNC double oapiGetEmptyMass (OBJHANDLE hVessel)

Returns empty mass of a vessel, excluding fuel.

* OAPIFUNC void oapiSetEmptyMass (OBJHANDLE hVessel, double mass)

Set the empty mass of a vessel (excluding fuel).

* OAPIFUNC double oapiGetFuelMass (OBJHANDLE hVessel)

Returns current fuel mass of the first propellant resource of a vessel.

* OAPIFUNC double oapiGetMaxFuelMass (OBJHANDLE hVessel)

Returns maximum fuel capacity of the first propellant resource of a vessel.

« OAPIFUNC PROPELLANT HANDLE oapiGetPropellantHandle (OBJHANDLE
DWORD idx)

Returns an identifier of a vessel’s propellant resource.

* OAPIFUNC double oapiGetPropellantMass (PROPELLANT_HANDLE ph)

Returns the current fuel mass [kg] of a propellant resource.

* OAPIFUNC double oapiGetPropellantMaxMass (PROPELLANT_HANDLE ph)

Returns the maximum capacity [kg] of a propellant resource.

* OAPIFUNC DOCKHANDLE oapiGetDockHandle (OBJHANDLE hVessel, UINT n)

Returns a handle to a vessel docking port.

* OAPIFUNC OBJHANDLE oapiGetDockStatus (DOCKHANDLE dock)

Returns the handle of a vessel docked at a port.

* OAPIFUNC void oapiGetFocusGlobalPos (VECTOR3 xpos)

Returns the position of the current focus object in the global reference frame.

¢ OAPIFUNC void oapiGetFocusGlobal Vel (VECTOR3 xvel)

Returns the velocity of the current focus object in the global reference frame.

* OAPIFUNC void oapiGetFocusRelativePos (OBJHANDLE hRef, VECTOR3 xpos)

hVessel,

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 65

Returns the distance vector from hRef to the current focus object.

* OAPIFUNC void oapiGetFocusRelativeVel (OBJHANDLE hRef, VECTOR3 xvel)

Returns the velocity difference vector of the current focus object relative to hRef.

* OAPIFUNC BOOL oapiGetAltitude (OBJHANDLE hVessel, double x*alt)

Returns the altitude of a vessel over a planetary surface.

* OAPIFUNC BOOL oapiGetPitch (OBJHANDLE hVessel, double *pitch)

Returns a vessel’s pitch angle w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetBank (OBJHANDLE hVessel, double xbank)

Returns a vessel’s bank angle w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetHeading (OBJHANDLE hVessel, double xheading)

Returns a vessel’s heading (against geometric north) calculated for the local horizon plane.

* OAPIFUNC BOOL oapiGetFocusAltitude (double xalt)

Returns the altitude of the current focus vessel over a planetary surface.

* OAPIFUNC BOOL oapiGetFocusPitch (double xpitch)

Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetFocusBank (double *bank)

Returns the bank angle of the current focus vessel w.r.t. the local horizon.

¢ OAPIFUNC BOOL oapiGetFocusHeading (double xheading)

Returns the heading (against geometric north) of the current focus vessel calculated for the local horizon
plane.

* OAPIFUNC BOOL oapiGetAirspeed (OBJHANDLE hVessel, double *airspeed)

Returns a vessel’s airspeed w.r.t. the closest planet or moon.

* OAPIFUNC BOOL oapiGetAirspeed Vector (OBJHANDLE hVessel, VECTOR3 sxspeedvec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s frame of reference.

* OAPIFUNC BOOL oapiGetShipAirspeed Vector (OBJHANDLE hVessel, VECTOR3 xspeedvec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the vessel’s local frame of reference.

* OAPIFUNC BOOL oapiGetFocusAirspeed (double xairspeed)

Returns the current focus vessel’s airspeed w.r.t. the closest planet or moon.

* OAPIFUNC BOOL oapiGetFocusAirspeed Vector (VECTOR3 #speedvec)

Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s
frame of reference.

* OAPIFUNC BOOL oapiGetFocusShipAirspeed Vector (VECTOR3 xspeedvec)

Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the vessel’s local frame of
reference.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 66

* OAPIFUNC BOOL oapiGetEquPos (OBJHANDLE hVessel, double slongitude, double xlatitude,
double xradius)

Returns a vessel’s spherical equatorial coordinates (longitude, latitude and radius) with respect to the
closest planet or moon.

* OAPIFUNC BOOL oapiGetFocusEquPos (double *xlongitude, double *latitude, double *radius)

Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

¢ OAPIFUNC void oapiGetAtm (OBJHANDLE hVessel, ATMPARAM xprm, OBJHANDLE
xhAtmRef=0)

Returns the atmospheric parameters at the current vessel position.

* OAPIFUNC void oapiGetEngineStatus (OBJHANDLE hVessel, ENGINESTATUS xes)

Retrieve the status of main, retro and hover thrusters for a vessel.

* OAPIFUNC void oapiGetFocusEngineStatus (ENGINESTATUS xes)

Retrieve the engine status for the focus vessel.

* OAPIFUNC void oapiSetEngineLevel (OBJHANDLE hVessel, ENGINETYPE engine, double
level)

Engage the specified engines.

* OAPIFUNC int oapiGetAttitudeMode (OBJHANDLE hVessel)

Returns a vessel’s current attitude thruster mode.

* OAPIFUNC int oapiToggleAttitudeMode (OBJHANDLE hVessel)

Flip a vessel’s attitude thruster mode between rotational and linear.

* OAPIFUNC bool oapiSetAttitudeMode (OBJHANDLE hVessel, int mode)

Set a vessel’s attitude thruster mode.

* OAPIFUNC int oapiGetFocusAttitudeMode ()

Returns the current focus vessel’s attitude thruster mode (rotational or linear).

¢ OAPIFUNC int oapiToggleFocusAttitudeMode ()

Flip the current focus vessel’s attitude thruster mode between rotational and linear.

* OAPIFUNC bool oapiSetFocusAttitudeMode (int mode)

Set the current focus vessel’s attitude thruster mode.

7.41.1 Function Documentation

7.41.1.1 OAPIFUNC BOOL oapiGetAirspeed (OBJHANDLE hVessel, double * airspeed)

Returns a vessel’s airspeed w.r.t. the closest planet or moon.

Parameters:

hVessel vessel handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 67

airspeed pointer to variable receiving airspeed value [m/s]

Returns:

Error flag (false on failure)

Note:

This function works even for planets or moons without atmosphere. It returns an "airspeed-equivalent”
value.

7.41.1.2 OAPIFUNC BOOL oapiGetAirspeedVector (OBJHANDLE #hVessel, VECTOR3 x speed-
vec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s frame of reference.

Parameters:

hVessel vessel handle

speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Returns:

Error flag (false on failure)

Note:

This function returns the airspeed vector with respect to the local horizon reference frame. To get the
vector with respect to the local vessel coordinates, use oapiGetShipAirspeed Vector().

7.41.1.3 OAPIFUNC BOOL oapiGetAltitude (OBJHANDLE hVessel, double * alf)

Returns the altitude of a vessel over a planetary surface.

Parameters:

hVessel vessel handle

alt pointer to variable receiving altitude value

Returns:

Error flag (false on failure)

Note:

Unit is meter [m]

Returns altitude above closest planet.

Altitude is measured above mean planet radius (as defined by SIZE parameter in planet’s cfg file)
The handle passed to the function must refer to a vessel.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 68

7.41.1.4 OAPIFUNC void oapiGetAtm (OBJHANDLE hVessel, ATMPARAM x prm, OBJHAN-
DLE x hAtmRef = 0)

Returns the atmospheric parameters at the current vessel position.

Parameters:

«— hVessel vessel handle
— prm pointer to ATMPARAM structure receiving atmospheric parameters.

— hAtmRef pointer to handle receiving the atmosphere reference body.

Note:

If hVessel == NULL, the current focus vessel is used for the calculation.

If hAtmRef != NULL, it receives the handle of the celestial body contributing the atmospheric param-
eters.

If the vessel is not within range of any planet atmosphere model, all fields of the prm structure are set
to 0. If applicable, xhAtmRef is set to NULL.

Currently, atmospheric values only depend on altitude, and don’t take into account local weather vari-
ations.

7.41.1.5 OAPIFUNC int oapiGetAttitudeMode (OBJHANDLE FhVessel)

Returns a vessel’s current attitude thruster mode.

Parameters:

hVessel vessel handle

Returns:

Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

Note:

The handle must refer to a vessel. This function does not support other object types.

See also:

oapiToggleAttitudeMode, oapiSetAttitudeMode

7.41.1.6 OAPIFUNC BOOL oapiGetBank (OBJHANDLE hVessel, double * bank)

Returns a vessel’s bank angle w.r.t. the local horizon.

Parameters:

hVessel vessel handle

bank pointer to variable receiving bank value

Returns:

Error flag (false on failure)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 69

Note:

Unit is radian [rad]

Returns bank angle w.r.t. closest planet

The local horizon is the plane whose normal is defined by the distance vector from the planet centre to
the vessel.

The handle passed to the function must refer to a vessel.

See also:

oapiGetHeading, oapiGetPitch, oapiGetAltitude

7.41.1.7 OAPIFUNC DOCKHANDLE oapiGetDockHandle (OBJHANDLE #Vessel, UINT n)

Returns a handle to a vessel docking port.

Parameters:

hVessel vessel handle

n docking port index (>=0)

Returns:

docking port handle, or NULL if index is out of range

See also:

VESSEL::GetDockHandle

7.41.1.8 OAPIFUNC OBJHANDLE oapiGetDockStatus (DOCKHANDLE dock)

Returns the handle of a vessel docked at a port.

Parameters:

dock docking port handle

Returns:

Handle of docked vessel, or NULL if no vessel is docked at the port.

See also:

oapiGetDockHandle, VESSEL::GetDockStatus

7.41.1.9 OAPIFUNC double oapiGetEmptyMass (OBJHANDLE hVessel)

Returns empty mass of a vessel, excluding fuel.

Parameters:

hVessel vessel handle

Returns:

empty vessel mass [kg]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 70

Note:

hVessel must be a vessel handle. Other object types are invalid.

Do not rely on a constant empty mass. Structural changes (e.g. discarding a rocket stage) will affect
the empty mass.

For multistage configurations, the fuel mass of all currently inactive stages contributes to the empty
mass. Only the fuel mass of active stages is excluded.

7.41.1.10 OAPIFUNC void oapiGetEngineStatus (OBJHANDLE #Vessel, ENGINESTATUS x es)

Retrieve the status of main, retro and hover thrusters for a vessel.

Parameters:

hVessel vessel handle

es pointer to an ENGINESTATUS structure which will receive the engine level parameters

Note:

The main/retro engine level has arange of [-1,+1]. A positive value indicates engaged main/disengaged
retro thrusters, a negative value indicates engaged retro/disengaged main thrusters. Main and retro
thrusters cannot be engaged simultaneously. For vessels without retro thrusters the valid range is
[0,+1]. The valid range for hover thrusters is [0,+1].

ENGINESTATUS has the following components:

typedef struct {

double main; // -1 (full retro) .. +1 (full main)
double hover; // 0 .. +1 (full hover)
int attmode; // O=rotation, l=translation

} ENGINESTATUS;

7.41.1.11 OAPIFUNC BOOL oapiGetEquPos (OBJHANDLE #&Vessel, double * longitude, double x
latitude, double * radius)

Returns a vessel’s spherical equatorial coordinates (longitude, latitude and radius) with respect to the closest
planet or moon.

Parameters:

hVessel vessel handle
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]

radius pointer to variable receiving radius value [m]

Returns:

Error flag (false on failure)

Note:

The handle passed to the function must refer to a vessel.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 71

7.41.1.12 OAPIFUNC BOOL oapiGetFocusAirspeed (double * airspeed)

Returns the current focus vessel’s airspeed w.r.t. the closest planet or moon.

Parameters:

airspeed pointer to variable receiving airspeed value [m/s]

Returns:

Error flag (false on failure)

See also:

oapiGetFocusAirspeedVector

7.41.1.13 OAPIFUNC BOOL oapiGetFocusAirspeedVector (VECTORS3 x speedvec)

Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s
frame of reference.

Parameters:

speedvec pointer to variable receiving airspeed vector [m/s in X,y,z]

Returns:

Error flag (false on failure)

See also:

oapiGetFocusAirspeed

7.41.1.14 OAPIFUNC BOOL oapiGetFocusAltitude (double * alf)

Returns the altitude of the current focus vessel over a planetary surface.

Parameters:

alt pointer to variable receiving altitude value [m]

Returns:

Error flag (false on failure)

7.41.1.15 OAPIFUNC int oapiGetFocusAttitudeMode ()

Returns the current focus vessel’s attitude thruster mode (rotational or linear).

Returns:

Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 72

7.41.1.16 OAPIFUNC BOOL oapiGetFocusBank (double * bank)

Returns the bank angle of the current focus vessel w.r.t. the local horizon.

Parameters:

bank pointer to variable receiving bank angle [rad]

Returns:

Error flag (false on failure)

See also:

oapiGetFocusHeading, oapiGetFocusPitch, oapiGetFocusAltitude

7.41.1.17 OAPIFUNC void oapiGetFocusEngineStatus (ENGINESTATUS x es)

Retrieve the engine status for the focus vessel.

Parameters:

es pointer to an ENGINESTATUS structure which will receive the engine level parameters.

See also:

oapiGetEngineStatus

7.41.1.18 OAPIFUNC BOOL oapiGetFocusEquPos (double x longitude, double * latitude, double *
radius)

Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.
Parameters:
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]
Returns:

Error flag (false on failure)

7.41.1.19 OAPIFUNC void oapiGetFocusGlobalPos (VECTOR3 x pos)

Returns the position of the current focus object in the global reference frame.

Parameters:

pos pointer to vector receiving coordinates

Note:

The global reference frame is the heliocentric ecliptic system at ecliptic and equinox of J2000.0.
Units are meters.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 73

See also:

oapiGetFocusGlobal Vel

7.41.1.20 OAPIFUNC void oapiGetFocusGlobalVel (VECTORS3 x vel)

Returns the velocity of the current focus object in the global reference frame.

Parameters:

vel pointer to vector receiving velocity data

Note:

The global reference frame is the heliocentric ecliptic system at ecliptic and equinox of J2000.
Units are meters/second.

See also:

oapiGetFocusGlobalPos

7.41.1.21 OAPIFUNC BOOL oapiGetFocusHeading (double * heading)

Returns the heading (against geometric north) of the current focus vessel calculated for the local horizon
plane.

Parameters:

heading pointer to variable receiving heading value [rad]

Returns:

Error flag (false on failure)

See also:

oapiGetFocusBank, oapiGetFocusPitch, oapiGetFocusAltitude

7.41.1.22 OAPIFUNC BOOL oapiGetFocusPitch (double * pitch)

Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

Parameters:

pitch pointer to variable receiving pitch value

Returns:

Error flag (false on failure)

See also:

oapiGetFocusBank, oapiGetFocusHeading, oapiGetFocusAltitude

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 74

7.41.1.23 OAPIFUNC void oapiGetFocusRelativePos (OBJHANDLE iRef, VECTORS3 x pos)

Returns the distance vector from hRef to the current focus object.

Parameters:

hRef reference object handle

pos pointer to vector receiving distance data

Note:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

See also:

oapiGetFocusRelative Vel

7.41.1.24 OAPIFUNC void oapiGetFocusRelativeVel (OBJHANDLE hRef, VECTORS vel)

Returns the velocity difference vector of the current focus object relative to hRef.

Parameters:

hRef reference object handle

vel pointer to vector receiving velocity difference data

Note:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

See also:

oapiGetFocusRelativePos

7.41.1.25 OAPIFUNC BOOL oapiGetFocusShipAirspeedVector (VECTORS3 x speedvec)

Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the vessel’s local frame
of reference.

Parameters:

speedvec pointer to variable receiving airspeed vector [m/s in X,y,z]

Returns:

Error flag (false on failure)

7.41.1.26 OAPIFUNC double oapiGetFuelMass (OBJHANDLE hVessel)

Returns current fuel mass of the first propellant resource of a vessel.

Parameters:

hVessel vessel handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 75

Returns:

Current fuel mass [kg]

Note:
This function is equivalent to

oapiGetPropellantMass (oapiGetPropellantHandle (hVessel, 0))

hVessel must be a vessel handle. Other object types are invalid.
For multistage configurations, this returns the current fuel mass of active stages only.

See also:

oapiGetMaxFuelMass, oapiGetEmptyMass

7.41.1.27 OAPIFUNC BOOL oapiGetHeading (OBJHANDLE hVessel, double * heading)

Returns a vessel’s heading (against geometric north) calculated for the local horizon plane.

Parameters:

hVessel vessel handle

heading pointer to variable receiving heading value [rad]
Returns:

Error flag (false on failure)

Note:

Unit is radian [rad] O=north, PI/2=east, etc.
The handle passed to the function must refer to a vessel.

See also:

oapiGetBank, oapiGetPitch, oapiGetAltitude

7.41.1.28 OAPIFUNC double oapiGetMaxFuelMass (OBJHANDLE £ Vessel)

Returns maximum fuel capacity of the first propellant resource of a vessel.

Parameters:

hVessel vessel handle

Returns:

Maximum fuel mass [kg]

Note:
This function is equivalent to

oapiGetPropellantMaxMass (oapiGetPropellantHandle (hVessel, 0))

hVessel must be a vessel handle. Other object types are invalid.
For multistage configurations, this returns the sum of the max fuel mass of active stages only.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 76

7.41.1.29 OAPIFUNC BOOL oapiGetPitch (OBJHANDLE #hVessel, double * pitch)

Returns a vessel’s pitch angle w.r.t. the local horizon.

Parameters:

hVessel vessel handle

pitch pointer to variable receiving pitch value

Returns:

Error flag (false on failure)

Note:

Unit is radian [rad]

Returns pitch angle w.r.t. closest planet

The local horizon is the plane whose normal is defined by the distance vector from the planet centre to
the vessel.

The handle passed to the function must refer to a vessel.

See also:

oapiGetHeading, oapiGetBank, oapiGetAltitude

7.41.1.30 OAPIFUNC PROPELLANT_HANDLE oapiGetPropellantHandle (OBJHANDLE # Ves-
sel, DWORD idx)

Returns an identifier of a vessel’s propellant resource.

Parameters:

hVessel vessel handle

idx propellant resource index (>=0)

Returns:

propellant resource id, or NULL if idx >= # propellant resources

7.41.1.31 OAPIFUNC double oapiGetPropellantMass (PROPELLANT_HANDLE ph)

Returns the current fuel mass [kg] of a propellant resource.

Parameters:

ph propellant resource identifier

Returns:

current fuel mass [kg] of the resource.

See also:

oapiGetPropellantMaxMass, oapiGetPropellantHandle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 77

7.41.1.32 OAPIFUNC double oapiGetPropellantMaxMass (PROPELLANT_HANDLE ph)

Returns the maximum capacity [kg] of a propellant resource.

Parameters:

ph propellant resource identifier

Returns:

maximum fuel capacity [kg] of the resource.

See also:

oapiGetPropellantHandle, VESSEL::GetPropellantMaxMass

7.41.1.33 OAPIFUNC BOOL oapiGetShipAirspeedVector (OBJHANDLE #Vessel, VECTOR3
speedvec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the vessel’s local frame of reference.

Parameters:

hVessel vessel handle

speedvec pointer to variable receiving airspeed vector [m/s in X,y,z]

Returns:

Error flag (false on failure)

Note:

This function returns the airspeed vector with respect to the vessel’s frame of reference. The get the
vector with respect to the local horizon’s frame of reference, use oapiGetAirspeedVector().

7.41.1.34 OAPIFUNC bool oapiSetAttitudeMode (OBJHANDLE hVessel, int mode)

Set a vessel’s attitude thruster mode.

Parameters:

hVessel vessel handle

mode attitude mode (O=disable, 1=rotational, 2=linear)

Returns:

Error flag; false indicates failure (requested mode not available)

Note:

The handle must refer to a vessel. This function does not support other object types.

See also:

oapiToggleAttitudeMode, oapiGetAttitudeMode

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.41 Vessel functions 78

7.41.1.35 OAPIFUNC void oapiSetEmptyMass (OBJHANDLE hVessel, double mass)

Set the empty mass of a vessel (excluding fuel).

Parameters:

hVessel vessel handle

mass empty mass [kg]

Note:

Use this function to register structural mass changes, for example as a result of jettisoning a fuel tank,
etc.

7.41.1.36 OAPIFUNC void oapiSetEngineLevel (OBJHANDLE hVessel, ENGINETYPE engine,
double level)

Engage the specified engines.

Parameters:

hVessel vessel handle
engine identifies the engine to be set

level engine thrust level [0,1]

Note:

Not all vessels support all types of engines.
Setting main thrusters > 0 implies setting retro thrusters to 0 and vice versa.
Setting main thrusters to -level is equivalent to setting retro thrusters to +level and vice versa.

7.41.1.37 OAPIFUNC bool oapiSetFocusAttitudeMode (int mode)

Set the current focus vessel’s attitude thruster mode.

Parameters:

mode attitude mode (O=disable, 1=rotational, 2=linear)

Returns:

Error flag; false indicates error (requested mode not available)

See also:

oapiGetFocusAttitudeMode, oapiToggleFocusAttitudeMode

7.41.1.38 OAPIFUNC int oapiToggleAttitudeMode (OBJHANDLE £ Vessel)

Flip a vessel’s attitude thruster mode between rotational and linear.

Parameters:

hVessel vessel handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.42 Coordinate transformations 79

Returns:

The new attitude mode (1=rotational, 2=linear, O=unchanged disabled)

Note:

he handle must refer to a vessel. This function does not support other object types.
This function flips between linear and rotational, but has no effect if attitude thrusters were disabled.

See also:

oapiSetAttitudeMode, oapiGetAttitudeMode

7.41.1.39 OAPIFUNC int oapiToggleFocusAttitudeMode ()

Flip the current focus vessel’s attitude thruster mode between rotational and linear.

Returns:

The new attitude mode (1=rotational, 2=linear, O=unchanged disabled)

Note:

This function flips between linear and rotational, but has no effect if attitude thrusters were disabled.

See also:

oapiSetFocusAttitudeMode, oapiGetFocusAttitudeMode

7.42 Coordinate transformations

Functions

* OAPIFUNC void oapiGetRotationMatrix (OBJHANDLE hObj, MATRIX3 xmat)

Returns the current rotation matrix of an object.

* OAPIFUNC void oapiGlobalToLocal (OBJHANDLE hObj, const VECTOR3 xglob, VECTOR3
*loc)

Maps a point from the global frame to a local object frame.
* OAPIFUNC void oapiLocalToGlobal (OBJHANDLE hObj, const VECTOR3 xloc, VECTOR3
*glob)
Maps a point from a local object frame to the global frame.

* OAPIFUNC void oapiEquToLocal (OBJHANDLE hObj, double Ing, double lat, double rad, VEC-
TOR3 xloc)

Returns the cartesian position in the local object frame of a point given in equatorial coordinates.

* OAPIFUNC void oapiLocalToEqu (OBJHANDLE hObj, const VECTOR3 &loc, double *Ing, dou-
ble xlat, double *rad)

Returns the equatorial coordinates of a point given in the local frame of an object.

* OAPIFUNC void oapiEquToGlobal (OBJHANDLE hObj, double Ing, double lat, double rad, VEC-
TOR3 xglob)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.42 Coordinate transformations 80

Returns the global cartesian position of a point given in equatorial coordinates of an object.

* OAPIFUNC void oapiGlobalToEqu (OBJHANDLE hObj, const VECTOR3 &glob, double xIng,
double «lat, double *rad)

Returns the equatorial coordinates with respect to an object of a point given in the global reference frame.

* OAPIFUNC double oapiOrthodome (double Ing1, double latl, double Ing2, double lat2)

Returns the angular distance of two points on a sphere.

7.42.1 Function Documentation
7.42.1.1 OAPIFUNC void oapiEquToGlobal (OBJHANDLE hObj, double Ing, double lat, double
rad, VECTORS3 x glob)

Returns the global cartesian position of a point given in equatorial coordinates of an object.

Parameters:
«— hObj object handle
<« Ing longitude of point [rad]
« lat latitude of point [rad]
« rad distance from local object origin [m]

— glob point in cartesian coordinates of the global reference frame [m]

See also:

oapiGlobalToEqu, oapiEquToLocal, oapiLocalToEqu

7.42.1.2 OAPIFUNC void oapiEquToLocal (OBJHANDLE kObj, double Ing, double lat, double rad,
VECTORS3 x loc)

Returns the cartesian position in the local object frame of a point given in equatorial coordinates.

Parameters:
«— hObj object handle
« Ing longitude of point [rad]
« lat latitude of point [rad]
«— rad distance from local object origin [m]

— loc point in cartesian coordinates of the local object frame [m]

See also:

oapiLocalToEqu, oapiEquToGlobal, oapiGlobalToEqu

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.42 Coordinate transformations 81

7.42.1.3 OAPIFUNC void oapiGetRotationMatrix (OBJHANDLE 1Obj, MATRIX3 * mat)

Returns the current rotation matrix of an object.

Parameters:

<« hObj object handle

— mat rotation matrix

Note:

The returned rotation matrix can be used to transform orientations from the local frame of an object to
Orbiter’s global reference frame (ecliptic and equinox of J2000) and vice versa.

The rotation, defined by matrix R, together with a translation vector t, provides the transformation of
a point p between local and global coordinates:

ﬁglobal = Rﬁiocal + t_'
and
ﬁocal = RT (ﬁglobal - 5
See also:

VESSEL::GetRotationMatrix,
mul(const MATRIX3&,const VECTOR3&),
tmul(const MATRIX3&,const VECTOR3&)

7.42.1.4 OAPIFUNC void oapiGlobalToEqu (OBJHANDLE /0bj, const VECTORS3 & glob, double
* Ing, double x lat, double * rad)

Returns the equatorial coordinates with respect to an object of a point given in the global reference frame.

Parameters:

«— hObj object handle

«— glob point in global coordinates

— Ing pointer to variable receiving the longitude value [rad]
— lat pointer to variable receiving the latitude value [rad]

— rad pointer to variable receiving the radial distance value [m]

See also:

oapiEquToLocal, oapiLocalToEqu, oapiEquToGlobal

7.42.1.5 OAPIFUNC void oapiGlobalToLocal (OBJHANDLE k0bj, const VECTORS3 « glob, VEC-
TORS3 x loc)

Maps a point from the global frame to a local object frame.

Parameters:

«— hObj object handle

«— glob point in global coordinates

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.42 Coordinate transformations 82

— loc point mapped into local coordinates

Note:

This function maps global point glob into the local reference frame of body #Obj. The transformation
is given by

Proc = Rio; (Piiob — Phob;)
where Rnobj, Phob; are the body’s rotation matrix and global position, respectively.

See also:

oapiLocalToGlobal, oapiGetRotationMatrix

7.42.1.6 OAPIFUNC void oapiLocalToEqu (OBJHANDLE hObj, const VECTORS3 & loc, double *
Ing, double * lat, double * rad)

Returns the equatorial coordinates of a point given in the local frame of an object.

Parameters:

«— hObj object handle

«— loc point in cartesian coordinates of the local object frame [m]
— Ing pointer to variable receiving the longitude value [rad]

— lat pointer to variable receiving the latitude value [rad]

— rad pointer to variable receiving the radial distance value [m]

See also:

oapiEquToLocal, oapiEquToGlobal, oapiGlobalToEqu

7.42.1.7 OAPIFUNC void oapiLocalToGlobal (OBJHANDLE hObj, const VECTORS3 x loc, VEC-
TORS3 x glob)

Maps a point from a local object frame to the global frame.

Parameters:
«— hObj object handle
<« loc point in local coordinates of the object frame
— glob point mapped into global coordinates
Note:

This function maps point loc given in local coordinates of hObj into the global reference frame
(barycentric ecliptic and equinox of J2000). The transformation is given by

Delob = RhobjDioc + Phobj

where Rnobj, Phobj are the body’s rotation matrix and global position, respectively.

See also:

oapiGlobalToLocal, oapiGetRotationMatrix

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.43 Camera functions 83

7.42.1.8 OAPIFUNC double oapiOrthodome (double Ingl, double lat1, double Ing2, double lat2)

Returns the angular distance of two points on a sphere.

Parameters:

Ingl longitude value of point 1 [rad]
lat1 latitude value of point 1 [rad]
Ing2 longitude value of point 2 [rad]
lat2 latitude value of point 2 [rad]

Note:

Given two points on the surface of a sphere, this function returns the orthodome (shortest) angular
distance between them.

The shortest surface path between the points is an arc on a great circle containing the two points, and
its length is given by d = a R, where a is the angular distance returned by oapiOrthodome, and R is the
radius of the sphere.

7.43 Camera functions

Functions

OAPIFUNC bool oapiCameralnternal ()

Returns flag to indicate internal/external camera mode.

* OAPIFUNC int oapiCameraMode ()

Returns the current camera view mode.

* OAPIFUNC int oapiCockpitMode ()

Returns the current cockpit display mode.

* OAPIFUNC OBJHANDLE oapiCameraTarget ()

Returns a handle to the current camera target.

* OAPIFUNC OBJHANDLE oapiCameraProxyGbody ()

Returns celestial body whose surface is closest to the camera.

* OAPIFUNC void oapiCameraGlobalPos (VECTOR3 *gpos)

Returns current camera position in global coordinates.

* OAPIFUNC void oapiCameraGlobalDir (VECTOR3 x*gdir)

Returns current camera direction in global coordinates.

¢ OAPIFUNC void oapiCameraRotationMatrix (MATRIX3 xrmat)
* OAPIFUNC double oapiCameraTargetDist ()

Returns the distance between the camera and its target [m].

* OAPIFUNC double oapiCameraAzimuth ()

Returns the current camera azimuth angle with respect to the target.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.43 Camera functions 84

* OAPIFUNC double oapiCameraPolar ()

Returns the current camera polar angle with respect to the target.

* OAPIFUNC double oapiCameraAperture ()

Returns the current camera aperture (the field of view) in rad.

* OAPIFUNC void oapiCameraSetAperture (double aperture)

Change the camera aperture (field of view).

* OAPIFUNC void oapiCameraScaleDist (double dscale)

Moves the camera closer to the target or further away.

* OAPIFUNC void oapiCameraRotAzimuth (double dazimuth)

Rotate the camera around the target (azimuth angle).

* OAPIFUNC void oapiCameraRotPolar (double dpolar)

Rotate the camera around the target (polar angle).

* OAPIFUNC void oapiCameraSetCockpitDir (double polar, double azimuth, bool transition=false)

Set the camera direction in cockpit mode.

* OAPIFUNC void oapiCameraAttach (OBJHANDLE hObj, int mode)

Attach the camera to a new target, or switch between internal and external camera mode.

7.43.1 Function Documentation

7.43.1.1 OAPIFUNC double oapiCameraAperture ()

Returns the current camera aperture (the field of view) in rad.

Returns:

camera aperture [rad]

Note:

Orbiter defines the the aperture as 1/2 of the vertical field of view, between the viewport centre and the
top edge of the viewport.

7.43.1.2 OAPIFUNC void oapiCameraAttach (OBJHANDLE hObj, int mode)

Attach the camera to a new target, or switch between internal and external camera mode.

Parameters:

hObj handle of the new camera target

mode camera mode (O=internal, 1=external, 2=don’t change)

Note:

If the new target is not a vessel, the camera mode is always set to external, regardless of the value of
mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.43 Camera functions 85

See also:

oapiCameraMode, oapiCameraTarget

7.43.1.3 OAPIFUNC double oapiCameraAzimuth ()

Returns the current camera azimuth angle with respect to the target.

Returns:

Camera azimuth angle [rad]. Value O indicates that the camera is behind the target.

Note:

This function is useful only in external camera mode. In internal mode, it will always return 0.

7.43.1.4 OAPIFUNC void oapiCameraGlobalDir (VECTORS3 x gdir)

Returns current camera direction in global coordinates.

Parameters:

gdir pointer to vector to receive global camera direction

See also:

oapiCameraGlobalPos

7.43.1.5 OAPIFUNC void oapiCameraGlobalPos (VECTORS3 x gpos)

Returns current camera position in global coordinates.

Parameters:

gpos pointer to vector to receive global camera coordinates

Note:

The global coordinate system is the heliocentric ecliptic frame at epoch J2000.0.

See also:

oapiCameraGlobalDir

7.43.1.6 OAPIFUNC bool oapiCameralnternal ()

Returns flag to indicate internal/external camera mode.

Returns:

true indicates an internal camera mode, i.e. the camera is located inside a vessel cockpit. In this case,
the camera target is always the current focus object. false indicates an external camera mode, i.e. the
camera points toward an object from outside. The camera target may be a vessel, planet, spaceport,
etc.

See also:

oapiCameraMode, oapiCockpitMode

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.43 Camera functions 86

7.43.1.7 OAPIFUNC int oapiCameraMode ()
Returns the current camera view mode.
Returns:

Camera mode:
e CAM_COCKPIT cockpit (internal) mode
* CAM_TARGETRELATIVE tracking mode (relative direction)
e CAM_ABSDIRECTION tracking mode (absolute direction)
e CAM_GLOBALFRAME tracking mode (global frame)
* CAM_TARGETTOOBJECT tracking mode (target to object)
* CAM_TARGETFROMOBJECT tracking mode (object to target)
* CAM_GROUNDOBSERVER ground observer mode

See also:

oapiCameralnternal, VESSEL::GetCameraOffset, VESSEL::GetCameraDefaultDirection

7.43.1.8 OAPIFUNC double oapiCameraPolar ()

Returns the current camera polar angle with respect to the target.

Returns:

Camera polar angle [rad]. Value 0 indicates that the camera is at the same elevation as the target.

Note:

This function is useful only in external camera mode. In internal mode, it will always return 0.

7.43.1.9 OAPIFUNC void oapiCameraRotAzimuth (double dazimuth)

Rotate the camera around the target (azimuth angle).

Parameters:

dazimuth change in azimuth angle [rad]

Note:

This function is ignored if the camera is in internal mode.

7.43.1.10 OAPIFUNC void oapiCameraRotPolar (double dpolar)

Rotate the camera around the target (polar angle).

Parameters:

dpolar change in polar angle [rad]

Note:

This function is ignored if the camera is in internal mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.43 Camera functions 87

7.43.1.11 OAPIFUNC void oapiCameraScaleDist (double dscale)

Moves the camera closer to the target or further away.

Parameters:

dscale distance scaling factor

Note:

Setting dscale < 1 will move the camera closer to its target. dscale > 1 will move it further away.
This function is ignored if the camera is in internal mode.

7.43.1.12 OAPIFUNC void oapiCameraSetAperture (double aperture)

Change the camera aperture (field of view).

Parameters:

aperture new aperture [rad]

Note:

Orbiter restricts the aperture to the range from RAD«*0.1 to RAD%80 (i. e. field of view between 0.2
and 160 deg. Very wide angles (> 90 deg) and very narrow angles (< 5 deg) should only be used to
implement specific optical devices, e.g. telescopes or wide-angle cameras, not for standard observer
views.

The Orbiter user interface does not accept apertures > 45 deg or < 5 deg. As soon as the user manip-
ulates the aperture manually, it will be clamped back to the range from 5 to 45 deg.

7.43.1.13 OAPIFUNC void oapiCameraSetCockpitDir (double polar, double azimuth, bool transi-
tion = false)

Set the camera direction in cockpit mode.

Parameters:

polar polar angle [rad]
azimuth azimuth angle [rad]

transition transition flag (see notes)

Note:

This function is ignored if the camera is not currently in cockpit mode.

The polar and azimuth angles are relative to the default view direction (see VES-
SEL::SetCameraDefaultDirection())

The requested direction should be within the current rotation ranges (see VES-
SEL::SetCameraRotationRange()), otherwise the result is undefined.

If transition==false, the new direction is set instantaneously; otherwise the camera swings from the
current to the new direction (not yet implemented).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 88

7.43.1.14 OAPIFUNC OBJHANDLE oapiCameraTarget ()

Returns a handle to the current camera target.

Returns:
Handle to the current camera target (i.e. the object the camera is pointing at in external mode, or the
handle of the vessel in cockpit mode)

Note:
The camera target is not necessarily a vessel, and if it is a vessel, it is not necessarily the focus object
(the vessel receiving user input).

See also:

oapiCameraAttach

7.43.1.15 OAPIFUNC double oapiCameraTargetDist ()

Returns the distance between the camera and its target [m].

Returns:

Distance between camera and camera target [m].

7.43.1.16 OAPIFUNC int oapiCockpitMode ()

Returns the current cockpit display mode.

Returns:

Cockpit mode:
* COCKPIT_GENERIC (generic cockpit mode: left+right MFD and HUD)
* COCKPIT_PANELS (2D panel mode)
* COCKPIT_VIRTUAL (virtual cockpit mode)

Note:

This function also works if the camera is not currently in cockpit mode.

See also:

oapiCameralnternal, VESSEL::GetCameraOffset, VESSEL::GetCameraDefaultDirection

7.44 Functions for planetary bodies
7.44.1 Detailed Description

All OBJHANDLE function parameters used in this section must refer to planetary bodies (planets, moons,
astereoids, etc.) unless stated otherwise. Invalid handles may lead to crashes.

Currently, the orientation of planetary rotation axes is assumed time-invariant. Precession, nutation and
similar effects are not currently simulated.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44

Functions for planetary bodies 89

Functions

OAPIFUNC double oapiGetPlanetPeriod (OBJHANDLE hPlanet)

Returns the rotation period (the length of a siderial day) of a planet.

OAPIFUNC double oapiGetPlanetObliquity (OBJHANDLE hPlanet)

Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis and the ecliptic
zenith).

OAPIFUNC double oapiGetPlanetTheta (OBJHANDLE hPlanet)

Returns the longitude of the ascending node.

OAPIFUNC void oapiGetPlanetObliquityMatrix (OBJHANDLE hPlanet, MATRIX3 smat)

Returns a rotation matrix which performs the transformation from the planet’s tilted coordinates into global
coordinates.

OAPIFUNC double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)

Returns the current rotation angle of the planet around its axis.

OAPIFUNC bool oapiPlanetHasAtmosphere (OBJHANDLE hPlanet)

Test for existence of planetary atmosphere.
OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double rad, ATMPARAM
*prm)

Returns atmospheric parameters as a function of distance from the planet centre.

OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double alt, double Ing, double
lat, ATMPARAM x*prm)

Returns atmospheric parameters of a planet as a function of altitude and geographic position.

OAPIFUNC const ATMCONST x* oapiGetPlanetAtmConstants (OBJHANDLE hPlanet)

Returns atmospheric constants for a planet.

OAPIFUNC VECTOR3 oapiGetGroundVector (OBJHANDLE hPlanet, double Ing, double lat, int
frame=2)

Returns the velocity vector of a surface point.

OAPIFUNC VECTOR3 oapiGetWind Vector (OBJHANDLE hPlanet, double Ing, double lat, double
alt, int frame=0)

Returns the wind velocity at a given position in a planet’s atmosphere.

OAPIFUNC DWORD oapiGetPlanetJCoeffCount (OBJHANDLE hPlanet)

Returns the number of perturbation coefficients defined for a planet.

OAPIFUNC double oapiGetPlanetJCoeff (OBJHANDLE hPlanet, DWORD n)

Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 90

7.44.2 Function Documentation
7.44.2.1 OAPIFUNC VECTORS3 oapiGetGroundVector (OBJHANDLE hPlanet, double Ing, dou-
ble lat, int frame = 2)

Returns the velocity vector of a surface point.

Parameters:

hPlanet planet handle
Ing longitude [rad]
lat latitude [rad]

Jrame reference frame flag (see notes)

Returns:

surface velocity [m]

Note:

The frame flag can be used to specify the reference frame to which the returned vector refers. The
following values are supported:

* (: surface-relative (relative to local horizon)

* 1: planet-local (relative to local planet frame)

¢ 2: planet-local non-rotating

* 3: global (maps to global frame and adds planet velocity)

frame = 0 and frame = 1 are provided for completeness only. They return (0,0,0) by definition.
frame = 2 returns the following vector for a planet with mean radius R and rotation period T*

o —sin(Ing)
U= — cos(lat) 0

cos(Ing)

frame = 3 maps the vector given above into the global frame and adds the planet velocity.

7.44.2.2 OAPIFUNC const ATMCONST oapiGetPlanetAtmConstants (OBJHANDLE hPlanet)

Returns atmospheric constants for a planet.

Parameters:

hPlanet planet handle

Returns:

pointer to ATMCONST structure containing atmospheric coefficients for the planet (see notes)

Note:
ATMCONST has the following components:

typedef struct {

double pO; // pressure at mean radius (’sea level’) [Pa]
double rhoO; // density at mean radius [kg/m3]
double R; // specific gas constant [J/ (K kg)]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 91

double gamma; // ratio of specific heats, c_p/c_v
double C; // exponent for pressure equation (temporary)
double O2pp; // partial pressure of oxygen
double altlimit; // atmosphere altitude limit [m]
double radlimit; // radius limit (altlimit + mean radius)
double horizonalt; // horizon rendering altitude
VECTOR3 color0; // sky colour at sea level during daytime
} ATMCONST;

If the specified planet does not have an atmosphere, return value is NULL.

See also:

oapiPlanetHasAtmosphere, oapiGetPlanetAtmParams

7.44.2.3 OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double alt, double
Ing, double lat, ATMPARAM x prm)

Returns atmospheric parameters of a planet as a function of altitude and geographic position.

Parameters:

hPlanet planet handle

alt altitude above planet mean radius [m]

Ing longitude [rad]

lat latitude [rad]

prm pointer to ATMPARAM structure receiving parameters

See also:

oapiGetPlanetAtmParams(OBJHANDLE,double,double,double, ATMPARAMx), oapiPlanetHasAt-
mosphere, oapiGetPlanetAtmConstants

7.44.2.4 OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double rad, ATM-
PARAM x prm)

Returns atmospheric parameters as a function of distance from the planet centre.

Parameters:

hPlanet planet handle
rad radius from planet centre [m]

prm pointer to ATMPARAM structure receiving parameters

Note:

If the planet has no atmosphere, or if the defined radius is beyond the defined upper atmosphere limit,
all parameters are set to 0.

If the atmosphere model is position- as well as altitude-dependent, this function assumes longitude=0
and latitude=0.

ATMPARAM has the following components:

typedef struct {

double T; // temperature [K]

double p; // pressure [Pa]

double rho; // density [kg/m"3]
} ATMPARAM;

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 92

See also:

oapiGetPlanetAtmParams(OBJHANDLE,double,double,double, ATMPARAMx), oapiPlanetHasAt-
mosphere, oapiGetPlanetAtmConstants

7.44.2.5 OAPIFUNC double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)

Returns the current rotation angle of the planet around its axis.

Parameters:

hPlanet planet handle

Returns:

Rotation angle [rad]

Note:
The complete rotation matrix from planet local to global (ecliptic) coordinates is given by

cosw 0 —sinw
R=R, 0 1 0
sinw 0 cosw

where R, is the obliquity matrix as returned by oapiGetPlanetObliquityMatrix(), and w is the rotation
angle returned by oapiGetPlanetCurrentRotation().

7.44.2.6 OAPIFUNC double oapiGetPlanet]Coeff (OBJHANDLE hPlanet, DWNORD n)

Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

Parameters:

hPlanet planet handle
n coefficient index

Returns:

Perturbation coefficient J,, 42

Note:

Valid indices n are 0 to oapiGetPlanet]CoeffCount()-1
Orbiter calculates the planet’s gravitational potential U for a given distance r and latitude ¢ by

N

1- ; In <f)2 Py (sin cb)]

where R is the planet’s equatorial radius, M is its mass, G is the gravitational constant, and P, is the
Legendre polynomial of order n.

Orbiter currently considers perturbations to be only a function of latitude (polar), not of longitude.
The first coefficient, n = 0, returns J2, which accounts for the ellipsoid shape of a planet (flattening).
Higher perturbation terms are usually small compared to J2 (and not known for most planets).

U(r9) =

See also:

oapiGetPlanetJCoeffCount

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 93

7.44.2.7 OAPIFUNC DWORD oapiGetPlanet]JCoeffCount (OBJHANDLE #hPlanet)
Returns the number of perturbation coefficients defined for a planet.

Returns the number of perturbation coefficients defined for a planet to describe the latitude-dependent
perturbation of its gaviational potential. A return value of O indicates that the planet is considered to have
a spherically symmetric gravity field.

Parameters:

hPlanet planet handle

Returns:

Number of perturbation coefficients.

Note:

Even if a planet defines perturbation coefficients, its gravity perturbation may be ignored, if the user
disabled nonspherical gravity sources, or if orbit stabilisation is active at a given time step. Use the
VESSEL::NonsphericalGravityEnabled() function to check if a vessel uses the perturbation terms in
the update of its state vectors.

Depending on the distance to the planet, Orbiter may use fewer perturbation terms than defined, if their
contribution is negligible:

If Jn(g)” < €,n > 2, ignore all terms > n,

where R is the planet radius, r is the distance from the planet, and J,, is the n- 2nd perturbation term
defined for the planet.

Orbiter uses € = 10719

7.44.2.8 OAPIFUNC double oapiGetPlanetObliquity (OBJHANDLE hPlanet)

Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis and the ecliptic
zenith).

Parameters:

hPlanet planet handle

Returns:

obliquity [rad]

Note:

In Orbiter, the ecliptic zenith (at epoch J2000) is the positive y-axis of the global frame of reference.

See also:

oapiGetPlanetPeriod, oapiGetPlanetTheta

7.44.2.9 OAPIFUNC void oapiGetPlanetObliquityMatrix (OBJHANDLE hPlanet, MATRIX3 x
mat)

Returns a rotation matrix which performs the transformation from the planet’s tilted coordinates into global
coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.44 Functions for planetary bodies 94

Parameters:

hPlanet planet handle

mat pointer to a matrix receiving the rotation data

Note:

The returned matrix is given by

cosf 0 —sind 1 0 0
R, = 0 1 0 0 cosp —sing
sinf 0 cosf 0 singp cosyp

where 6 is the longitude of the ascending node of the equator, as returned by oapiGetPlanetTheta(), and
 is the obliquity as returned by oapiGetPlanetObliquity(). R, does not include the current rotation of
the planet around its axis. R, is therefore time-independent.

See also:

oapiGetPlanetPeriod

7.44.2.10 OAPIFUNC double oapiGetPlanetPeriod (OBJHANDLE hPlanet)

Returns the rotation period (the length of a siderial day) of a planet.

Parameters:

hPlanet planet handle

Returns:

planet rotation period [seconds]

See also:

oapiGetPlanetObliquity, oapiGetPlanetTheta

7.44.2.11 OAPIFUNC double oapiGetPlanetTheta (OBJHANDLE hPlanet)
Returns the longitude of the ascending node.

Returns the longitude of the ascending node of the equatorial plane (denoted by ¢), that is, the angle
between the vernal equinox and the ascending node of the equator w.r.t. the ecliptic.

Parameters:

hPlanet planet handle

Returns:

longitude of ascending node of the equator [rad]

Note:

For Earth, this function will return 0. (The ascending node of Earth’s equatorial plane is the definition
of the vernal equinox).

See also:

oapiGetPlanetPeriod, oapiGetPlanetObliquity

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.45 Surface base interface 95

7.44.2.12 OAPIFUNC VECTORS3 oapiGetWind Vector (OBJHANDLE hPlanet, double Ing, double
lat, double alt, int frame = 0)

Returns the wind velocity at a given position in a planet’s atmosphere.

Parameters:

hPlanet planet handle

Ing longitude [rad]

lat latitude [rad]

altitude above mean planet radius [m]

Jrame reference frame flag (see notes)

Returns:

wind velocity vector relative to surface [m]

Note:

The frame flag can be used to specify the reference frame to which the returned vector refers. The
following values are supported:

¢ (: surface-relative (relative to local horizon)
* 1: planet-local (relative to local planet frame)
» 2: planet-local non-rotating (as 1, but adds the surface velocity, see oapiGetGroundVector)
* 3: global (maps to global frame and adds planet velocity)
Warning:

Local wind velocities are not currently implemented. The surface-relative wind velocity is always
(0,0,0). To ensure forward compatibility, plugins should not rely on this limitation, but use this function
instead.

7.44.2.13 OAPIFUNC bool oapiPlanetHasAtmosphere (OBJHANDLE hPlanet)

Test for existence of planetary atmosphere.

Parameters:

hPlanet planet handle

Returns:

true if an atmosphere has been defined for the planet, false otherwise.

See also:

oapiGetPlanetAtmParams

7.45 Surface base interface

Functions

* OAPIFUNC OBJHANDLE oapiGetBasePlanet (OBJHANDLE hBase)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.45 Surface base interface 96

Returns a handle for the planet/moon the given base is located on.

* OAPIFUNC void oapiGetBaseEquPos (OBJHANDLE hBase, double *Ing, double xlat, double
xrad=0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a surface base.

* OAPIFUNC DWORD oapiGetBasePadCount (OBJHANDLE hBase)
Returns the number of VIOL landing pads owned by the base.

* OAPIFUNC bool oapiGetBasePadEquPos (OBJHANDLE hBase, DWORD pad, double xIng, double
xlat, double xrad=0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a VTOL landing pad.

* OAPIFUNC bool oapiGetBasePadStatus (OBJHANDLE hBase, DWORD pad, int *status)
Returns the status of a VTOL landing pad (free, occupied or cleared).

* OAPIFUNC NAVHANDLE oapiGetBasePadNav (OBJHANDLE hBase, DWORD pad)
Returns a handle to the ILS transmitter of a VIOL landing pad, if available.

7.45.1 Function Documentation
7.45.1.1 OAPIFUNC void oapiGetBaseEquPos (OBJHANDLE hBase, double * Ing, double x lat,
double * rad = 0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a surface base.

Parameters:

hBase surface base handle
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]

rad pointer to variable to receive radius value [m]

Note:

hBase must be a valid base handle (e.g. from oapiGetBaseByName())
The radius pointer can be omitted if not required.
Currently, rad will always return the planet mean radius.

7.45.1.2 OAPIFUNC DWORD oapiGetBasePadCount (OBJHANDLE FhBase)
Returns the number of VTOL landing pads owned by the base.

Parameters:

hBase surface base handle

Returns:

Number of landing pads

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.45 Surface base interface 97

Note:

hBase must be a valid base handle (e.g. from oapiGetBaseByName())
This function only counts VTOL pads, not runways.

7.45.1.3 OAPIFUNC bool oapiGetBasePadEquPos (OBJHANDLE hBase, DWORD pad, double
Ing, double * lat, double * rad = 0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a VTOL landing pad.

Parameters:

hBase surface base handle

pad pad index

Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]

rad pointer to variable to receive radius value [m]

Returns:

false indicates failure (pad index out of range). In that case, the return values are undefined.

Note:

hBase must be a valid base handle (e.g. from oapiGetBaseByName())
0 <= pad < oapiGetBasePadCount() is required.
The radius pointer can be omitted if not required.

7.45.1.4 OAPIFUNC NAVHANDLE oapiGetBasePadNav (OBJHANDLE hBase, DWORD pad)
Returns a handle to the ILS transmitter of a VTOL landing pad, if available.

Parameters:

hBase surface base handle

pad pad index

Returns:

Handle of a ILS transmitter, or NULL if the pad index is out of range or the pad has no ILS.

Note:

hBase must be a valid base handle (e.g. from oapiGetBaseByName())
0 <= pad < oapiGetBasePadCount() is required.

7.45.1.5 OAPIFUNC bool oapiGetBasePadStatus (OBJHANDLE hBase, DWORD pad, int « status)

Returns the status of a VTOL landing pad (free, occupied or cleared).

Parameters:

hBase surface base handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.46 Time functions

98

pad pad index

status pointer to variable to receive pad status

Returns:

false indicates failure (pad index out of range)

Note:

hBase must be a valid base handle (e.g. from oapiGetBaseByName())
0 <= pad < oapiGetBasePadCount() is required.

status can be one of the following:

0 =pad is free

1 = pad is occupied

2 = pad is cleared for an incoming vessel

7.45.1.6 OAPIFUNC OBJHANDLE oapiGetBasePlanet (OBJHANDLE #hBase)

Returns a handle for the planet/moon the given base is located on.

Parameters:

hBase base handle

Returns:

Planet handle, or NULL if the base was not recognised.
See also:
oapiGetBaseBylIndex, oapiGetBaseByName

7.46 Time functions

Functions

OAPIFUNC double oapiGetSimTime ()

Retrieve simulation time (in seconds) since simulation start.

OAPIFUNC double oapiGetSimStep ()

Retrieve length of last simulation time step (from previous to current frame) in seconds.

OAPIFUNC double oapiGetSysTime ()

Retrieve system (real) time since simulation start.

OAPIFUNC double oapiGetSysStep ()

Retrieve length of last system time step in seconds.

OAPIFUNC double oapiGetSimMIJD ()

Retrieve absolute time measure (Modified Julian Date) for current simulation state.

OAPIFUNC double oapiGetSysMID ()

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.46 Time functions

929

Retrieve the current computer system time in Modified Julian Date (MJD) format.

OAPIFUNC bool oapiSetSimMID (double mjd, int pmode=0)

Set the current simulation time. The simulation session performs a jump to the new time.

OAPIFUNC double oapiTime2MJD (double simt)

Convert a simulation up time value into a Modified Julian Date.

OAPIFUNC double oapiGetTimeAcceleration ()

Returns simulation time acceleration factor.

OAPIFUNC void oapiSetTimeAcceleration (double warp)

Set the simulation time acceleration factor.

OAPIFUNC double oapiGetFrameRate ()

Returns current simulation frame rate (frames/sec).

OAPIFUNC bool oapiGetPause ()

Returns the current simulation pause state.

OAPIFUNC void oapiSetPause (bool pause)

Sets the simulation pause state.

7.46.1 Function Documentation

7.46.1.1 OAPIFUNC double oapiGetFrameRate ()

Returns current simulation frame rate (frames/sec).

Returns:

Current frame rate (fps)

7.46.1.2 OAPIFUNC bool oapiGetPause ()

Returns the current simulation pause state.

Returns:

true if simulation is currently paused, false if it is running.

See also:

oapiSetPause

7.46.1.3 OAPIFUNC double oapiGetSimMJD ()

Retrieve absolute time measure (Modified Julian Date) for current simulation state.

Returns:

Current Modified Julian Date (days)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.46 Time functions 100

Note:

Orbiter defines the Modified Julian Date (MJID) as JD - 240 0000.5, where JD is the Julian Date. JD is
the interval of time in mean solar days elapsed since 4713 BC January 1 at Greenwich mean noon.

See also:

oapiSetSimMIJD, oapiGetSimTime

7.46.1.4 OAPIFUNC double oapiGetSimStep ()

Retrieve length of last simulation time step (from previous to current frame) in seconds.

Returns:

Simulation time step (seconds)

Note:

This parameter is useful for numerical (finite difference) calculation of time derivatives.

7.46.1.5 OAPIFUNC double oapiGetSimTime ()

Retrieve simulation time (in seconds) since simulation start.

Returns:

Simulation up time (seconds)

Note:

Since the simulation up time depends on the simulation start time, this parameter is useful mainly for
time differences. To get an absolute time parameter, use oapiGetSimMJID().

7.46.1.6 OAPIFUNC double oapiGetSysM.JD ()

Retrieve the current computer system time in Modified Julian Date (MJD) format.

Returns:

Computer system time in MJD format

Note:

The returned value is the UTC time obtained from the computer system clock, plus dt=66.184 seconds
to map from UTC to TDB (Barycentric Dynamical Time) used internally by Orbiter. The dt offset was
not added in previous Orbiter releases.

See also:

oapiGetSysTime

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.46 Time functions 101

7.46.1.7 OAPIFUNC double oapiGetSysStep ()

Retrieve length of last system time step in seconds.

Returns:

System time step (seconds)

Note:

Unlike oapiGetSimStep(), this function does not include the time compression factor. It is useful to
control actions which do not depend on the simulation time acceleration.

7.46.1.8 OAPIFUNC double oapiGetSysTime ()

Retrieve system (real) time since simulation start.

Returns:

Real-time simulation up time (seconds)

Note:

This function measures the real time elapsed since the simulation was started. Unlike oapiGetSim-
Time(), it doesn’t take into account time acceleration.

See also:

0apiGetSysMJD

7.46.1.9 OAPIFUNC double oapiGetTimeAcceleration ()
Returns simulation time acceleration factor.
Returns:
time acceleration factor
Note:

This function will not return O when the simulation is paused. Instead it will return the acceleration fac-
tor at which the simulation will resume when unpaused. Use oapiGetPause to obtain the pause/resume
state.

See also:

oapiSetTimeAcceleration

7.46.1.10 OAPIFUNC void oapiSetPause (bool pause)

Sets the simulation pause state.

Parameters:

pause true to pause the simulation, false to resume.

See also:

oapiGetPause

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.46 Time functions 102

7.46.1.11 OAPIFUNC bool oapiSetSimMJD (double mjd, int pmode = 0)

Set the current simulation time. The simulation session performs a jump to the new time.

Parameters:

mjd new simulation time

pmode vessel propagation modes (see notes)

Returns:

Currently this function always returns true.

Note:

The new time can be set before or after the current simulation time.
Deterministic objects (planets controlled by Keplerian elements or perturbation code) are propagated
directly. Vessels are propagated according to pmode, which can be a combination of

Orbital vessels .

PROP_ORBITAL_ELEMENTS Move the vessel along its current orbital
trajectory, assuming that no forces other than
the central body’s gravitational force are acting
on the vessel.
PROP_ORBITAL_FIXEDSTATE Keep the vessel’s relative position and velocity
with respect to the central body fixed in a
non-rotating frame.
PROP_ORBITAL_FIXEDSURF Keep the vessel’s position velocity and attitude
fixed relative to the planet surface.

Suborbital vessels .
PROP_SORBITAL_ELEMENTS PROP_ORBITAL_ELEMENTS

PROP_SORBITAL_FIXEDSTATE PROP_ORBITAL_FIXEDSTATE

PROP_SORBITAL_FIXEDSURF PROP_ORBITAL_FIXEDSURF

PROP_SORBITAL_DESTROY Destroy any suborbital vessels (i.e. assume that
the vessels impacted on the ground during time
propagation).

pmode can be a bitwise combination of one of the orbital and one of the suborbital modes. Default is
propagation along osculating elements for both.

See also:

oapiGetSimMJID

7.46.1.12 OAPIFUNC void oapiSetTimeAcceleration (double warp)

Set the simulation time acceleration factor.

Parameters:

warp new time acceleration factor

Note:

Warp factors will be clamped to the valid range [1,100000]. If the new warp factor is different from
the previous one, all DLLs (including the one that called oapiSetTimeAcceleration()) will be sent a
opcTimeAccChanged() message.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.47 Navigation radio transmitter functions

103

See also:

oapiGetTimeAcceleration

7.46.1.13 OAPIFUNC double oapiTime2MJD (double simt)

Convert a simulation up time value into a Modified Julian Date.

Parameters:

simt simulation time (seconds)

Returns:

Modified Julian Date (MJD) corresponding to simt.

7.47 Navigation radio transmitter functions

Functions

* OAPIFUNC void oapiGetNavPos (NAVHANDLE hNav, VECTOR3 *gpos)

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric ecliptic).

* OAPIFUNC DWORD oapiGetNavChannel (NAVHANDLE hNav)

Returns the channel number of a NAV transmitter.

* OAPIFUNC float oapiGetNavFreq (NAVHANDLE hNav)
Returns the frequency of a NAV transmitter.

* OAPIFUNC double oapiGetNavSignal (NAVHANDLE hNav, const VECTOR3 &gpos)

Returns the signal strength of a transmitter at a given position.

* OAPIFUNC float oapiGetNavRange (NAVHANDLE hNav)

Returns the range of a NAV transmitter.

* OAPIFUNC DWORD oapiGetNavType (NAVHANDLE hNav)
Returns the type id of a NAV transmitter.

* OAPIFUNC int oapiGetNavData (NAVHANDLE hNav, NAVDATA xdata)

Returns information about a NAV transmitter.

* OAPIFUNC int oapiGetNavDescr (NAVHANDLE hNav, char *«descr, int maxlen)

Returns a descriptive string for a NAV transmitter.

* OAPIFUNC bool oapiNavIinRange (NAVHANDLE hNav, const VECTOR3 &gpos)

Determines whether a given global coordinate is within the range of a NAV transmitter.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.47 Navigation radio transmitter functions 104

7.47.1 Function Documentation

7.47.1.1 OAPIFUNC DWORD oapiGetNavChannel (NAVHANDLE hNav)

Returns the channel number of a NAV transmitter.

Parameters:

hNav NAV transmitter handle

Returns:

channel number

Note:

Channel numbers range from 0 to 639.

To convert a channel number ch into a frequency, use f = (108.0 + 0.05 ch) MHz
See also:

oapiGetNavData, oapiGetNavFreq, oapiGetNavRange, oapiGetNavPos, oapiGetNavType

7.47.1.2 OAPIFUNC int oapiGetNavData (NAVHANDLE hNav, NAVDATA x data)

Returns information about a NAV transmitter.

Parameters:

«— hNav NAV transmitter handle

— data pointer to NAVDATA structure receiving transmitter data

Returns:

Error flag. Currently always returns 0.

Note:
On call, data must point to a NAVDATA variable.

See also:

NAVDATA, oapiGetNavType

7.47.1.3 OAPIFUNC int oapiGetNavDescr (NAVHANDLE hNav, char * descr, int maxlen)

Returns a descriptive string for a NAV transmitter.

Parameters:

hNav NAV transmitter handle
descr pointer to string receiving description

maxlen string buffer length

Returns:

Number of characters returned (excluding terminating NULL character). If maxlen was not sufficient
to store the complete description, the return value is negative.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.47 Navigation radio transmitter functions 105

Note:

This function fills string descr with a description of the NAV radio transmitter of lenght <= maxlen.
If the buffer length is greater than required for the description, a NULL character is appended.
The description format for the different transmitter types is as follows:

VOR "VOR <id>" where <id> is a 3-4 letter
sequence

VTOL "VTOL Pad-<#> <base>" where <#> is the pad number,
and <base>> is the base name

ILS "ILS Rwy <#> <base>" where <#> is the runway id,
and <base> is the base name

IDS "IDS D-<#> <vessel>" where <#> is the dock
number, and <vessel> is the
vessel name

XPDR "XPDR <vessel>" where <vessel> is the vessel
name

7.47.1.4 OAPIFUNC float oapiGetNavFreq (NAVHANDLE hNav)

Returns the frequency of a NAV transmitter.

Parameters:

hNav NAV transmitter handle

Returns:

Transmitter frequency [MHz]

Note:

In Orbiter, NAV transmitter frequencies range from 108.0 to 139.95 MHz and are incremented in 0.05
MHz steps.

See also:

oapiGetNavData, oapiGetNavChannel, oapiGetNavRange, oapiGetNavPos, oapiGetNavType

7.47.1.5 OAPIFUNC void oapiGetNavPos (NAVHANDLE hNav, VECTORS3 x* gpos)

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric ecliptic).

Parameters:

hNav NAV transmitter handle

gpos pointer to variable to receive global position

See also:

oapiGetNavRange, oapiGetNavType, oapiNavInRange

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.47 Navigation radio transmitter functions 106

7.47.1.6 OAPIFUNC float oapiGetNavRange (NAVHANDLE hNav)

Returns the range of a NAV transmitter.

Parameters:

hNav NAV transmitter handle

Returns:

Transmitter range [m]

Note:

A NAV receiver will only receive a signal when within the range of a transmitter.
Variable receiver sensitivity is not currently implemented.
Shadowing of a transmitter by obstacles between transmitter and receiver is not currently implemented.
Because the range of the transmitter depends on receiver gain as well as transmitter power, the range is
not strictly a property of the transmitter. It is preferred to calculate the range for a given receiver gain
by using the oapiGetNavData or oapiGetNavSignal functions.

See also:

oapiGetNavData, oapiGetNavSignal, oapiGetNavPos, oapiGetNavType, oapiNavInRange

7.47.1.7 OAPIFUNC double oapiGetNavSignal NAVHANDLE AhNav, const VECTOR3 & gpos)

Returns the signal strength of a transmitter at a given position.

Parameters:

hNav transmitter handle

gpos global position

Returns:

Signal strength in arbitrary units

Note:

The transmitter signal strength drops off with the square of distance to the transmitter. The units a
chosen so that a ’default’ receiver will be able to detect signals above a strength of 1.

See also:

oapiGetNavData, oapiGetNavRange

7.47.1.8 OAPIFUNC DWORD oapiGetNavType (NAVHANDLE hNav)
Returns the type id of a NAV transmitter.

Parameters:

hNav NAV transmitter handle

Returns:

transmitter type identifier

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.48 Script interpreter functions 107

Note:

The following transmitter types are currently supported:
e TRANSMITTER_VOR (omnidirectional beacon)
e TRANSMITTER_VTOL (launchpad homing beacon)
e TRANSMITTER_ILS (instrument landing system)
e TRANSMITTER_IDS (instrument docking system)
e TRANSMITTER_XPDR (transponder)

See also:

oapiGetNavData, oapiGetNavDescr

7.47.1.9 OAPIFUNC bool oapiNavinRange (NAVHANDLE hNav, const VECTOR3 & gpos)

Determines whether a given global coordinate is within the range of a NAV transmitter.

Parameters:

hNav NAV transmitter handle

gpos Global coordinates [m,m,m] of a point (cartesian heliocentric ecliptic)

Returns:

true if the point is within range of the transmitter.

7.48 Script interpreter functions

Functions

OAPIFUNC INTERPRETERHANDLE oapiCreatelnterpreter ()

Returns a handle to a new interpreter instance.

OAPIFUNC int oapiDellnterpreter INTERPRETERHANDLE hlinterp)

Delete an interpreter instance.

OAPIFUNC bool oapiExecScriptCmd (INTERPRETERHANDLE hlnterp, const char xcmd)

Executes a script command in an interpreter instance.

OAPIFUNC bool oapiAsyncScriptCmd (INTERPRETERHANDLE hlnterp, const char xcmd)

Passes a command to an interpreter instance for execution.

OAPIFUNC lua_State * oapiGetLua (INTERPRETERHANDLE hlinterp)

7.48.1 Function Documentation

7.48.1.1 OAPIFUNC bool oapiAsyncScriptCmd (INTERPRETERHANDLE #hlnterp, const char x
cmd)

Passes a command to an interpreter instance for execution.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.48 Script interpreter functions 108

Parameters:

hinterp interpreter handle

cmd Lua command to be executed

Returns:

false on error (interpreter library not found, or command error)

Note:

This function returns immediately. The command is executed during the next postStep cycle. If
more asynchronous commands are issued before execution starts, they are appended to the execution
list. If the interpreter receives a synchronous request (oapiExecScriptCmd) before the asynchrounous
commands are executed, the synchronous command is executed immediately, while the asynchronous
requests continue waiting.

See also:

oapiExecScriptCmd, oapiCreatelnterpreter, oapiDellnterpreter

7.48.1.2 OAPIFUNC INTERPRETERHANDLE oapiCreatelnterpreter ()

Returns a handle to a new interpreter instance.

Note:

The interpreter can subsequently be used to execute commands and scripts.

See also:

oapiDelInterpreter, oapiExecScriptCmd

7.48.1.3 OAPIFUNC int oapiDellnterpreter INTERPRETERHANDLE #hinterp)

Delete an interpreter instance.

Parameters:

hinterp interpreter handle

Note:

After the interpreter instance has been deleted, the handle becomes invalid and must not be used any
more.

If the interpreter was executing a background script, the execution is terminated when the interpreter
is deleted.

See also:

oapiCreatelnterpreter, oapiExecScriptCmd

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 109

7.48.1.4 OAPIFUNC bool oapiExecScriptCmd (INTERPRETERHANDLE hinterp, const char *
cmd)

Executes a script command in an interpreter instance.

Parameters:

hinterp interpreter handle

cmd LLua command to be executed

Returns:

false on error (interpreter library not found, or command error)

Note:

This function returns as soon as the command has been executed.

See also:

oapiAsyncScriptCmd, oapiCreatelnterpreter, oapiDellnterpreter

7.49 Visual and mesh functions

Typedefs

¢ typedef void(x LoadMeshClbkFunc)(MESHHANDLE hMesh, bool firstload)
Callback function used by oapiLoadMeshGlobal(const charx,LoadMeshClbkFunc).

Functions

OAPIFUNC VISHANDLE x* oapiObjectVisualPtr (OBJHANDLE hObject)

Returns a pointer storing the objects visual handle.

* OAPIFUNC MESHHANDLE oapiLoadMesh (const char *fname)

Loads a mesh from file and returns a handle to it.

* OAPIFUNC const MESHHANDLE oapiLoadMeshGlobal (const char *xfname)

Retrieves a mesh handle from the global mesh manager:

¢ OAPIFUNC const MESHHANDLE oapil.oadMeshGlobal (const char *xfname, LoadMeshClbkFunc
fClbk)

Retrieves a mesh handle from the global mesh manager.

* OAPIFUNC MESHHANDLE oapiCreateMesh (DWORD ngrp, MESHGROUP xgrp)

Creates a new mesh from a list of mesh group definitions.

* OAPIFUNC void oapiDeleteMesh (MESHHANDLE hMesh)

Removes a mesh from memory.

* OAPIFUNC DWORD oapiMeshGroupCount (MESHHANDLE hMesh)

Returns the number of mesh groups defined in a mesh.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49

Visual and mesh functions 110

OAPIFUNC MESHGROUP * oapiMeshGroup (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to the group specification of a mesh group.

OAPIFUNC MESHGROUP % oapiMeshGroup (DEVMESHHANDLE hMesh, DWORD idx)
OAPIFUNC MESHGROUPEX x* oapiMeshGroupEx (MESHHANDLE hMesh, DWORD idx)
OAPIFUNC DWORD oapiAddMeshGroup (MESHHANDLE hMesh, MESHGROUP x*grp)
OAPIFUNC bool oapiAddMeshGroupBlock (MESHHANDLE hMesh, DWORD grpidx, const
NTVERTEX *vtx, DWORD nvtx, const WORD xidx, DWORD nidx)

OAPIFUNC int oapiEditMeshGroup (MESHHANDLE hMesh, DWORD grpidx, GROUPEDIT-
SPEC xges)

Modify mesh group data.

OAPIFUNC int oapiEditMeshGroup (DEVMESHHANDLE hMesh, DWORD grpidx, GROU-
PEDITSPEC xges)
OAPIFUNC DWORD oapiMeshTextureCount (MESHHANDLE hMesh)

Returns the number of textures associated with a mesh.

OAPIFUNC SURFHANDLE oapiGetTextureHandle (MESHHANDLE hMesh, DWORD texidx)

Retrieve a surface handle for a mesh texture.

OAPIFUNC SURFHANDLE oapiLoadTexture (const char *fname, bool dynamic=false)

Load a texture from a file.

OAPIFUNC void oapiReleaseTexture (SURFHANDLE hTex)

Release a texture.

OAPIFUNC bool oapiSetTexture (MESHHANDLE hMesh, DWORD texidx, SURFHANDLE tex)

Replace a mesh texture.

OAPIFUNC bool oapiSetTexture (DEVMESHHANDLE hMesh, DWORD texidx, SURFHANDLE
tex)
OAPIFUNC DWORD oapiMeshMaterial Count (MESHHANDLE hMesh)

Returns the number of materials defined in the mesh.

OAPIFUNC MATERIAL x oapiMeshMaterial (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to a material specification in the material list of the mesh.

OAPIFUNC DWORD oapiAddMaterial (MESHHANDLE hMesh, MATERIAL xmat)

Add a material definition to a mesh.

OAPIFUNC bool oapiDeleteMaterial MESHHANDLE hMesh, DWORD idx)

Delete a material definition from the mesh.

OAPIFUNC int oapiSetMaterial (DEVMESHHANDLE hMesh, DWORD matidx, const MATE-
RIAL xmat)

Reset the properties of a mesh material.

OAPIFUNC bool oapiSetMeshProperty (MESHHANDLE hMesh, DWORD property, DWORD
value)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 111

Set custom properties for a mesh.

* OAPIFUNC bool oapiSetMeshProperty (DEVMESHHANDLE hMesh, DWORD property,
DWORD value)

Set custom properties for a device-specific mesh.

* OAPIFUNC void oapiParticleSetLevelRef (PSTREAM_HANDLE ph, double x1vl)

Reset the reference pointer used by the particle stream to calculate the intensity (opacity) of the generated
particles.

7.49.1 Typedef Documentation

7.49.1.1 typedef void(+ LoadMeshClbkFunc)(MESHHANDLE hMesh, bool firstload)
Callback function used by oapiLoadMeshGlobal(const charx,L.oadMeshCIbkFunc).

Parameters:

hMesh mesh handle
firstload flag indicating if the mesh has been loaded for the first time

Note:

If firstload==false, the mesh had already been loaded previously. In this case, the mesh is not re-loaded,
and the returned handle points to the previously loaded mesh.

7.49.2 Function Documentation

7.49.2.1 OAPIFUNC DWORD oapiAddMaterial (MESHHANDLE hMesh, MATERIAL x* mat)

Add a material definition to a mesh.

Parameters:

hMesh mesh handle

mat pointer to material definition

Returns:

Material index in the mesh.

Note:

The material is appended to the mesh material list.

See also:

oapiMeshMaterial, oapiDeleteMaterial, oapiMeshMaterial Count

7.49.2.2 OAPIFUNC MESHHANDLE oapiCreateMesh (DWORD ngrp, MESHGROUP = grp)

Creates a new mesh from a list of mesh group definitions.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 112

Parameters:

ngrp number of groups in the list

grp list of mesh groups

Returns:

Handle for the newly created mesh.

Note:

Orbiter performs a deep copy of the group definitions passed to the functions. Therefore it is admiss-
able to pass the groups as variables with local scope. If the mesh groups were dynamically allocated,
they should be deallocated by the caller after use.

7.49.2.3 OAPIFUNC bool oapiDeleteMaterial MESHHANDLE hMesh, DWORD idx)

Delete a material definition from the mesh.

Parameters:

hMesh mesh handle

idx material index (>=0)

Returns:

false indicates failure (index out of range)

Note:
This function adjusts all mesh group material indices to account for the modified material table. Any
groups that referenced the deleted material are reset to material 0 (default material).

See also:

oapiMeshMaterial, oapiAddMaterial, oapiMeshMaterial Count

7.49.2.4 OAPIFUNC void oapiDeleteMesh (MESHHANDLE hMesh)

Removes a mesh from memory.

Parameters:

hMesh mesh handle

7.49.2.5 OAPIFUNC int oapiEditMeshGroup (MESHHANDLE kMesh, DWORD grpidx, GROU-
PEDITSPEC ges)

Modify mesh group data.

Parameters:

hMesh mesh handle

grpidx mesh group index

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 113

ges replacement/modification data for the group

Returns:

0 on success, or error code

Note:

This function allows to modify a mesh group, by replacing vertex data, or group flags.

It should not be used to apply a linear transformation to the entire group (use VES-
SEL::MeshgroupTransform instead), because such transformations are usually implemented by defin-
ing a transformation matrix instead of editing the vertex positions directly.

This version operates on device-independent meshes, e.g. mesh templates.

oapiEditMeshGroup should be used in preference to oapiMeshGroup, because it is more likely to be
supported by external graphics engines.

See also:

oapiEditMeshGroup(DEVMESHHANDLE,DWORD,GROUPEDITSPECx)

7.49.2.6 OAPIFUNC SURFHANDLE oapiGetTextureHandle MESHHANDLE AMesh, DWORD
texidx)

Retrieve a surface handle for a mesh texture.

Parameters:

hMesh mesh handle

texidx texture index (>=1)

Returns:

surface handle

Note:

This function can be used for dynamically updating textures during the simulation.

the texture index is given by the order in which the textures appear in the texture list at the end of the
mesh file.

Important: Any textures which are to be dynamically modified should be listed with the "D" flag
("dynamic") in the mesh file. This causes Orbiter to decompress the texture when it is loaded. Blitting
operations to compressed surfaces is very inefficient on most graphics hardware.

7.49.2.7 OAPIFUNC MESHHANDLE oapil.oadMesh (const char * fname)

Loads a mesh from file and returns a handle to it.

Parameters:

fname mesh file name

Returns:

Handle to the loaded mesh. (NULL indicates load error)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 114

Note:

The file name should not contain a path or file extension. Orbiter appends extension .msh and searches
in the default mesh directory.
Meshes should be deallocated with oapiDeleteMesh when no longer needed.

See also:

oapiDeleteMesh, VESSEL::AddMesh

7.49.2.8 OAPIFUNC const MESHHANDLE oapil.oadMeshGlobal (const char x fname, Load-
MeshClbkFunc fClbk)

Retrieves a mesh handle from the global mesh manager.

Parameters:

Jname mesh file name
JCIbk Callback function for mesh modification

Returns:

mesh handle

Note:

This function is identical to oapiLoadMeshGlobal(const charx), except that it invokes the callback
function immediately after loading the mesh. This is important in combination with external graphics
clients, because Orbiter hands the loaded mesh on to the client for conversion to a device-specific for-
mat. The callback function is invoked before the mesh is passed to the graphics client. This allows to
apply modifications (e.g. decryption) while the mesh is still in an editable format. Applying the mod-
ifications to the mesh handle returned by oapil.oadMeshGlobal would not work in this case, because
the mesh has already been copied to the client.

7.49.2.9 OAPIFUNC const MESHHANDLE oapil.oadMeshGlobal (const char * fname)
Retrieves a mesh handle from the global mesh manager.

When called for the first time for any given file name, the mesh is loaded from file and stored as a system
resource. Every further request for the same mesh directly returns a handle to the stored mesh without
additional file I/O.

Parameters:

Jfname mesh file name

Returns:

mesh handle

Note:

Once a mesh is globally loaded it remains in memory until the user closes the simulation window.
This function can be used to pre-load meshes to avoid load delays during the simulation. For example,
parent objects may pre-load meshes for any child objects they may create later.

Do NOT delete any meshes obtained by this function with oapiDeleteMesh() Orbiter takes care of
deleting globally managed meshes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 115

If you assign the mesh to a vessel with a subsequent VESSEL::AddMesh() call, a copy of the global
mesh is created every time the vessel creates its visual, and discarded as soon as the visual is deleted.
The global mesh can therefore be regarded as a template from which individual vessel instances make
copies whenever they need to initialise their visual representation. Handles for the individual mesh
copies can be obtained within the VESSEL2::clbkVisualCreated() callback function, using the VES-
SEL::GetMesh() method. Vessels should only modify their individual meshes, never the global tem-
plate, since the latter is shared across all vessel instances.

For external graphics clients, the Orbiter core forwards the mesh data to the client for conversion to a
device-specific format. The mesh template referred to by the handle returned by oapil.oadMeshGlobal
is then no longer used, so any changes made to it will be ignored.

7.49.2.10 OAPIFUNC SURFHANDLE oapiloadTexture (const char x fname, bool dynamic =
false)

Load a texture from a file.

Parameters:

Jfname texture file name

dynamic allow dynamic modification

Returns:

Surface handle for the loaded texture, or NULL if not found.

Note:

Textures loaded by this function should be in DDS format and conform to the DirectX restrictions for
texture surfaces, typically square bitmaps with dimensions of powers of 2 (128x128, 256x256, etc.).
File names can contain search paths. Orbiter searches for textures in the standard way, i.e. first
searches the HitexDir directory (usually Textures2), then the TextureDir directory (usually Tex-
tures). All search paths are relative to the texture root directories. For example, oapil.oad-
Texture() ("myvessel\mytex.dds") would first search for Textures2\myvessel\mytex.dds, then for
Textures\myvessel\mytex.dds.

7.49.2.11 OAPIFUNC MESHGROUPx oapiMeshGroup (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to the group specification of a mesh group.

Parameters:

hMesh mesh handle
idx group index (>=0)

Returns:

pointer to mesh group specification (or NULL if idx out of range)

Note:

MESHGROUP is a structure that contains the components of the group, including vertex list, index
list, texture and material index.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 116

This method can be used to edit the a mesh group directly (for geometry animation, texture animation,
etc.)
This function should only be applied to device-independent meshes, such as mesh templates.
For device-dependent mesh instances (such as returned by VESSEL::GetDevMesh) use oapiEditMesh-
Group instead.

See also:

oapiEditMeshGroup

7.49.2.12 OAPIFUNC DWORD oapiMeshGroupCount MESHHANDLE hMesh)

Returns the number of mesh groups defined in a mesh.

Parameters:

hMesh mesh handle

Returns:

number of mesh groups defined in the mesh

Note:

Each mesh is subdivided into mesh groups, defining a part of the 3-D object represented by the mesh.
A group consists of a list of vertex coordinates and vertex indices, representing its geometry, and
optionally a material and a texture reference.

See 3DModel document for details of the mesh format.

7.49.2.13 OAPIFUNC MATERIAL* oapiMeshMaterial (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to a material specification in the material list of the mesh.

Parameters:

hMesh mesh handle

idx material index (>=0)

Returns:

pointer to material specification (or NULL if idx out of range)

Note:

MATERIAL is a structure defined as follows:

typedef struct { // material definition
COLOUR4 diffuse; // diffuse component
COLOUR4 ambient; // ambient component
COLOUR4 specular; // specular component
COLOUR4 emissive; // emissive component
float power; // specular power

} MATERIAL;

where COLOURA4 defines a 4-valued (RGBA) colour component (red, green, blue, opacity):

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 117

typedef struct { // vertex definition including normals and texture coordinates
float r; // red component
float g; // green component
float b; // blue component
float a; // opacity
} COLOUR4;

colour component entries are in the range 0..1. Values > 1 may sometimes be used to obtain special
effects.

This function can be used to edit mesh materials directly.

This function should only be used for mesh templates, not for device-specific rendering meshes (except
for Orbiter’s built-in graphics engine). For device meshes, use oapiSetMaterial instead.

See also:

oapiAddMaterial, oapiDeleteMaterial, oapiMeshMaterial Count

7.49.2.14 OAPIFUNC DWORD oapiMeshMaterial Count (MESHHANDLE hMesh)

Returns the number of materials defined in the mesh.

Parameters:

hMesh mesh handle

Returns:

number of materials defined in the mesh

Note:

A mesh can contain a number of material specifications, and individual mesh groups can be linked to
a material via the Mtrlldx entry in the group specification.

A material defines the diffuse, ambient, specular and emissive colour components of a mesh group,
and also its level of transparency.

See 3DModel document for details of the mesh format.

7.49.2.15 OAPIFUNC DWORD oapiMeshTextureCount MESHHANDLE hMesh)

Returns the number of textures associated with a mesh.

Parameters:

hMesh mesh handle

Returns:

Number of textures

See also:

oapiGetTextureHandle, oapiSetTexture

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 118

7.49.2.16 OAPIFUNC VISHANDLE+ oapiObjectVisualPtr (OBJHANDLE hObject)

Returns a pointer storing the objects visual handle.

Parameters:

hObject object handle

Returns:

pointer to visual handle

Note:

Returns a pointer that stores the object’s visual handle whenever the object is within visual range of
the camera. When the object is out of range, the pointer is set to NULL.
This function currently only works for vessel objects. All other object types return a pointer to NULL.

7.49.2.17 OAPIFUNC void oapiParticleSetLevelRef (PSTREAM_HANDLE ph, double * Iv])

Reset the reference pointer used by the particle stream to calculate the intensity (opacity) of the generated
particles.

Parameters:

ph particle stream handle

Ivl pointer to variable defining particle intensity

Note:

The variable pointed to by 1vl should be set to values between O (lowest intensity) and 1 (highest
intensity).

By default, exhaust streams are linked to the thrust level setting of the thruster they are associated with.
Reentry streams are set to a fixed level of 1 by default.

This function allows to customise the appearance of the particle streams directly by the module.
Other parameters besides the intensity level, such as atmospheric density can also have an effect on
the particle intensity.

7.49.2.18 OAPIFUNC void oapiReleaseTexture (SURFHANDLE h7ex)

Release a texture.

Parameters:

hTex Texture surface handle.

Note:

After the function returns, the surface handle is invalid and should no longer be used.
Do not release textures that a referenced by a mesh. Mesh textures are released automatically.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.49 Visual and mesh functions 119

7.49.2.19 OAPIFUNC int oapiSetMaterial (DEVMESHHANDLE hMesh, DWORD matidx, const
MATERIAL x mat)

Reset the properties of a mesh material.

Parameters:

hMesh device mesh handle
matidx material index (>= 0)

mat pointer to new material properties.

Returns:
Error flag: O=success, 1=no graphics engine attached, 2=graphics engine does not support operation,
3=invalid mesh handle, 4=material index out of range.

Note:

This function can be used to reset the parameters of an existing mesh material.
To add a new material, use oapiAddMaterial instead.

7.49.2.20 OAPIFUNC bool oapiSetMeshProperty (DEVMESHHANDLE hMesh, DWORD prop-
erty, DWORD value)

Set custom properties for a device-specific mesh.

Parameters:
hMesh device mesh handle

property property tag
value new mesh property value

Returns:

true if the property tag was recognised and the request could be executed, false otherwise.

Note:

Currently only a single mesh property is recognised, but this may be extended in future versions:

¢ MESHPROPERTY_MODULATEMATALPHA

if value==0 (default) disable material alpha information in textured mesh groups (only use texture
alpha channel).

if value<>0 modulate (mix) material alpha values with texture alpha maps.

See also:

oapiSetMeshProperty MESHHANDLE,DWORD,DWORD)

7.49.2.21 OAPIFUNC bool oapiSetMeshProperty (MESHHANDLE hMesh, DWORD property,
DWORD value)

Set custom properties for a mesh.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 120

Parameters:
hMesh mesh handle

property property tag
value new mesh property value

Returns:

true if the property tag was recognised and the request could be executed, false otherwise.

Note:

Currently only a single mesh property is recognised, but this may be extended in future versions:

¢ MESHPROPERTY_ MODULATEMATALPHA

if value==0 (default) disable material alpha information in textured mesh groups (only use texture
alpha channel).

if value<>0 modulate (mix) material alpha values with texture alpha maps.

See also:

oapiSetMeshProperty(DEVMESHHANDLE,DWORD,DWORD)

7.49.2.22 OAPIFUNC bool oapiSetTexture (MESHHANDLE hMesh, DWORD texidx, SURFHAN-
DLE tex)

Replace a mesh texture.

Parameters:

hMesh mesh handle
texidx texture index (>=1)

tex texture handle

Returns:

true if texture was set successfully, false if texidx is out of range.

Note:

This function replaces one of the mesh textures. All mesh groups referencing the corresponding texture
index will show the new texture.

texidx must be in the range [1..n] where n is the length of the texture list in the mesh, i.e. textures can
be replaced, but no new textures added.

To point an individual mesh group to a different texture, use oapiMeshGroup() to retrieve a
MESHGROUP pointer, and modify the TexIdx entry.

7.50 HUD, MFD and panel functions

Functions

* OAPIFUNC bool oapiSetHUDMode (int mode)
Set HUD (head up display) mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 121

* OAPIFUNC bool oapiSetHUDMode (int mode, const HUDPARAM sxprm)
Set HUD (head up display) mode with mode-specific parameters.

* OAPIFUNC int oapiGetHUDMode ()
Query current HUD (head up display) mode.

* OAPIFUNC int oapiGetHUDMode (HUDPARAM xprm)

Query current HUD mode and mode parameters.

¢ OAPIFUNC void oapiToggleHUDColour ()
Switch the HUD display to a different colour.

¢ OAPIFUNC void oapilncHUDIntensity ()
Increase the brightness of the HUD display.

* OAPIFUNC void oapiDecHUDIntensity ()
Decrease the brightness of the HUD display.

* OAPIFUNC void oapiRenderHUD (MESHHANDLE hMesh, SURFHANDLE xhTex)

Render custom HUD elements.

* OAPIFUNC void oapiOpenMFD (int mode, int mfd)
Set an MFD (multifunctional display) to a specific mode.

* OAPIFUNC void oapiToggleMFD_on (int mfd)
Switches an MFD on or off.

* OAPIFUNC int oapiGetMFDMode (int mfd)
Get the current mode of the specified MFD.

* OAPIFUNC int oapiBroadcastMFDMessage (int mode, int msg, void *xdata)
* OAPIFUNC int oapiSendMFDKey (int mfd, DWORD key)

Sends a keystroke to an MFD.

¢ OAPIFUNC void oapiRefreshMFDButtons (int mfd, OBJHANDLE hVessel=0)
Sends a clbkMFDMode call to the current focus vessel to allow it to dynamically update its button labels.

* OAPIFUNC bool oapiProcessMFDButton (int mfd, int bt, int event)

Requests a default action as a result of a MFD button event.

* OAPIFUNC const char * oapiMFDButtonLabel (int mfd, int bt)
Retrieves a default label for an MFD button.

* OAPIFUNC void oapiRegisterMFD (int mfd, const MFDSPEC &spec)

Registers an MFD position for a custom panel.

* OAPIFUNC void oapiRegisterMFD (int mfd, const EXTMFDSPEC x*spec)

Registers an MFD position for a custom panel or virtual cockpit. This version has an extended parameter
list.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 122

¢ OAPIFUNC void oapiRegisterExternMFD (ExternMFD xemfd, const MFDSPEC &spec)

* OAPIFUNC bool oapiUnregisterExternMFD (ExternMFD xemfd)

* OAPIFUNC void oapiRegisterPanelBackground (HBITMAP hBmp, DWORD flag=PANEL _-
ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM, DWORD ck=(DWORD)-1)

Register the background bitmap for a custom panel.

e OAPIFUNC void oapiRegisterPanelArea (int id, const RECT &pos, int draw_event=PANEL_-
REDRAW_NEVER, int mouse_event=PANEL_MOUSE_IGNORE, int bkmode=PANEL_MAP_-
NONE)

Defines a rectangular area within a panel to receive mouse or redraw notifications.

* OAPIFUNC void oapiSetPanelNeighbours (int left, int right, int top, int bottom)

Defines the neighbour panels of the current panels. These are the panels the user can switch to via Ctrl-
Arrow keys.

¢ OAPIFUNC void oapiTriggerPanelRedrawArea (int panel_id, int area_id)

Triggers a redraw notification for a panel area.

¢ OAPIFUNC void oapiTriggerRedrawArea (int panel_id, int vc_id, int area_id)

Triggers a redraw notification to either a 2D panel or a virtual cockpit.

* OAPIFUNC bool oapiBltPanelAreaBackground (int area_id, SURFHANDLE surf)

Copies the stored background of a panel area into the provided surface.

* OAPIFUNC void oapiSetDefNavDisplay (int mode)

Defines how the navigation mode buttons will be displayed in a default cockpit view.

* OAPIFUNC void oapiSetDefRCSDisplay (int mode)

Enable or disable the display of the reaction control system indicators/controls in default cockpit view.

* OAPIFUNC int oapiSwitchPanel (int direction)

Switch to a neighbour instrument panel in 2-D panel cockpit mode.

* OAPIFUNC int oapiSetPanel (int panel_id)

Switch to a different instrument panel in 2-D panel cockpit mode.

7.50.1 Function Documentation

7.50.1.1 OAPIFUNC bool oapiBltPanelAreaBackground (int area_id, SURFHANDLE surf)

Copies the stored background of a panel area into the provided surface.

This function should only be called from within the repaint callback function of an area registered with the
PANEL_MAP_BGONREQUEST flag.

Parameters:

area_id area identifier

surf surface handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 123

Note:

Areas defined with the PANEI_MAP_BGONREQUEST receive a surface with undefined contents when
their repaint callback is called. They can use oapiBltPanel AreaBackground to copy the area back-
ground into the surface.
For areas not registered with the PANEL_MAP_BGONREQUEST, this function will do nothing.
Using PANEL_MAP_BGONREQUEST is more efficient than PANEL_MAP_BACKGROUND if the area
doesn’t need to be repainted at each call of the callback function, because it delays blitting the back-
ground until the module requests the background. This is particularly significant for areas which are
updated at each time step.

See also:

oapiRegisterPanelArea, oapiRegisterPanelBackground

7.50.1.2 OAPIFUNC void oapiDecHUDIntensity ()
Decrease the brightness of the HUD display.

Note:

Calling this function will decrease the intensity (in virtual cockpit modes) or brightness (in other
modes) of the HUD display down to a minimum value.
This function should be called repeatedly (e.g. while the user presses a key).

7.50.1.3 OAPIFUNC int oapiGetHUDMode (HUDPARAM :x prm)

Query current HUD mode and mode parameters.

Parameters:

prm pointer to HUD parameter structure to be filled.

Returns:

Current HUD mode

See also:

HUD Modes, HUDPARAM, oapiGetHUDMode()

7.50.1.4 OAPIFUNC int oapiGetHUDMode ()
Query current HUD (head up display) mode.

Returns:

Current HUD mode

See also:

HUD Modes, oapiGetHUDMode(const HUDPARAM3), oapiSetHUDMode

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 124

7.50.1.5 OAPIFUNC int oapiGetMFDMode (int mfd)
Get the current mode of the specified MFD.

Parameters:

mfd MFD identifier (e.g. MED_LEFT, MFD_RIGHT)

Returns:

MFD Mode

See also:

MEFD Identifiers

7.50.1.6 OAPIFUNC void oapilncHUDIntensity ()
Increase the brightness of the HUD display.

Note:
Calling this function will increase the intensity (in virtual cockpit modes) or brightness (in other
modes) of the HUD display up to a maximum value.
This function should be called repeatedly (e.g. while the user presses a key).

See also:

oapiToggleHUDColour

7.50.1.7 OAPIFUNC const charx oapiMFDButtonLabel (int mfd, int bt)

Retrieves a default label for an MFD button.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)
bt button number (>=0)

Returns:

pointer to static string containing the label, or NULL if the button is not assigned.

Note:

Labels contain 1 to 3 characters.
This function can be used to paint the labels on the MFD buttons of a custom panel.
The labels correspond to the default button actions executed by VESSEL::ProcessMFDButton().

See also:

MFD Identifiers

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 125

7.50.1.8 OAPIFUNC void oapiOpenMFD (int mode, int mfd)

Set an MFD (multifunctional display) to a specific mode.

Parameters:

mode MFD mode
mfd MFD identifier (e.g. MED_LEFT, MFD_RIGHT)

Note:

mode MFD_NONE will turn off the MFD.
For the on-screen instruments, only MED_LEFT and MFD_RIGHT are supported. Custom panels may
support (up to 3) additional MFDs.

See also:

MEFD Identifiers, MFD Modes

7.50.1.9 OAPIFUNC bool oapiProcessMFDButton (int mfd, int bt, int event)

Requests a default action as a result of a MFD button event.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)
bt button number (>=0)
event mouse event (a combination of PANEL_MOUSE_xxx flags)

Returns:

Returns true if the button was processed, false if no action was assigned to the button.

Note:

Orbiter assigns default button actions for the various MFD modes. For example, in Orbit mode the
action assigned to button O is Select reference. Calling oapiProcessMFDButton (for example as a
reaction to a mouse button event) will execute this action.

7.50.1.10 OAPIFUNC void oapiRefreshMFDButtons (int mfd, OBJHANDLE #hVessel = 0)

Sends a clbkMFDMode call to the current focus vessel to allow it to dynamically update its button labels.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)

hVessel recipient vessel handle

Note:

This message will only be sent to the current input focus vessel. If hVessel != 0, the function will not
have any effect unless hVessel points to the focus vessel.

The recipient vessel will receive a VESSEL2::clbkMFDMode call, with the mode parameter set to
MED_REFRESHBUTTONS.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 126

This function can be used to force an MFD to refresh its button labels even if the mode has not changed.
This is useful to update the labels for modes that dynamically update their labels.

You don’t need to call oapiRefreshMFDButtons after an actual mode change, because a clbkMFD-
Mode call will be sent automatically by Orbiter.

See also:

MEFD Identifiers

7.50.1.11 OAPIFUNC void oapiRegisterMFD (int mfd, const EXTMFDSPEC spec)

Registers an MFD position for a custom panel or virtual cockpit. This version has an extended parameter
list.

Parameters:

mfd MFD identifier (e.g. MED_LEFT, MFD_RIGHT)

spec extended MFD parameters (see below)

Note:

Should be called in the body of VESSEL2::clbkLoadPanel() or VESSEL2::clbklLoadVC() to define
MED instruments for 2-D instrument panels or 3-D virtual cockpits.
EXTMFDSPEC is a structure with the following interface:

typedef struct {
RECT pos; // position of MFD in panel (pixel)
DWORD nmesh; // mesh index (>=0)
DWORD ngroup; // mesh group index (>=0)
DWORD flag; // parameter flags (see below)
int nbtl; // number of buttons in array 1 (e.g. left side of MFD display)
int nbt2; // number of buttons in array 2 (e.g. right side of MFD display)
int bt_yofs; // y-offset of top button from top display edge (pixel)
int bt_ydist; // y-distance between buttons (pixel)
} MFDSPEC;

flag is a bitmask which can be set to a combination of the following options:

e MFD_SHOWMODELABELS Show 3-letter abbreviations for MFD modes when displaying the
mode selection page (default: only show carets ">"). This is useful if the buttons are not lo-
cated next to the list display.

If this function is used during initialisation of a 2-D instrument panel, pos defines the rectangle of the
MED display in the panel bitmap (in pixels), while nmesh and ngroup are ignored.
If it is used during initialisation of a virtual cockpit, nmesh and ngroup define the mesh and group
index of the mesh element which will receive the MFD display texture, while pos is ignored.

See also:

MEFD Identifiers

7.50.1.12 OAPIFUNC void oapiRegisterMFD (int mfd, const MFDSPEC & spec)

Registers an MFD position for a custom panel.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 127

spec MFD parameters (see below)

Note:

Should be called in the body of VESSEL2::clbkLoadPanel() for panels which define MFDs.
Defining more than 2 or 3 MFDs per panel can degrade performance.
MEFDSPEC is a structure with the following interface:

typedef struct {
RECT pos; // position of MFD in panel (pixel)
int nbt_left; // number of buttons on left side of MFD display
int nbt_right; // number of buttons on right side of MFD display

int bt_yofs; // y—offset of top button from top display edge (pixel)
int bt_ydist; // y-distance between buttons (pixel)
} MFDSPEC;
See also:
MFD Identifiers

7.50.1.13 OAPIFUNC void oapiRegisterPanelArea (int id, const RECT & pos, int draw_event =
PANEIL_REDRAW_NEVER, int mouse_event = PANEL_MOUSE_ IGNORE, int bkmode = PANEL_MAP_ —
NONE)

Defines a rectangular area within a panel to receive mouse or redraw notifications.

Parameters:

id area identifier

pos bounding box of the marked area
draw_event defines redraw events
mouse_event defines mouse events

bkmode redraw background mode

Note:

Each panel area must be defined with an identifier aid which is unique within the panel.
draw_event can have the following values:

* PANEL_REDRAW_NEVER: do not generate redraw events.
e PANEL_REDRAW_ALWAYS: generate a redraw event at every time step.
* PANEL_REDRAW_MOUSE: mouse events trigger redraw events.

For possible values of mouse_event see Mouse event identifiers. PANEL_MOUSE_ IGNORE prevents
mouse events from being triggered.

By default, no mouse events are sent during a playback session. You can force Orbiter to trigger mouse
events during a playback (e.g. to allow the user to operate MFD buttons) by using PANEL_MOUSE_ -
ONREPLAY in combination with any of the other mouse event flags.

bkmode defines the bitmap handed to the redraw callback:

* PANEL_MAP_NONE: provides an undefined bitmap. Should be used if the whole area is re-
painted.

* PANEL_MAP_CURRENT: provides a copy of the current area.

e PANEL_MAP_BACKGROUND : provides a copy of the panel background (as defined by oapiReg-
isterPanelBackground()).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 128

* PANEL_MAP_BGONREQUEST: like PANEL_MAP_BACKGROUND, this stores the area back-
ground, but the user must request it explicitly with a call to oapiBltPanelAreaBackground. This
can improve performance if the area does not need to be updated at each call of the repaint
callback function.

See also:

Mouse event identifiers, Panel redraw events, oapiRegisterPanelBackground

7.50.1.14 OAPIFUNC void oapiRegisterPanelBackground (HBITMAP hBmp, DWORD flag =
PANEL_ATTACH_BOTTOM|PANEIL_MOVEOUT_BOTTOM, DWORD ck = (DWORD) —1)

Register the background bitmap for a custom panel.

Parameters:

hBmp bitmap handle
flag property bit flags (see notes)

ck transparency colour key

Note:

This function will normally be called in the body of ovcLoadPanel.

Typically the bitmap will be stored as a resource in the DLL and obtained by a call to the Windows
function LoadBitmap(...).

flag defines panel properties and can be a combination of the following bitmasks:

e PANEL_ATTACH_{LEFT/RIGHT/TOP/BOTTOM}
e PANEL_MOVOUT_{LEFT/RIGHT/TOP/BOTTOM}

where PANEL_ATTACH_BOTTOM means that the bottom edge of the panel cannot be scrolled above
the bottom edge of the screen (other directions work equivalently) and PANEL_MOVEOUT_BOTTOM
means that the panel can be scrolled downwards out of the screen (other directions work equivalently)
The colour key, if defined, specifies a colour which will appear transparent when displaying the panel.
The key is in (hex) OxXRRGGBB format. If no key is specified, the panel will be opaque. It is best
to use black (0x000000) or white (Oxffffff) as colour keys, since other values may cause problems in
16bit screen modes. Of course, care must be taken that the keyed colour does not appear anywhere in
the opaque part of the panel.
See also:

oapiRegisterPanelArea

7.50.1.15 OAPIFUNC void oapiRenderHUD (MESHHANDLE /hMesh, SURFHANDLE * hTex)

Render custom HUD elements.

Parameters:

hMesh HUD mesh handle

hTex array of texture handles

Note:
This function should only be called from within VESSEL3::clbkRenderHUD.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 129

It can be used to render custom HUD elements in glass cockpit and 2-D panel mode.

The mesh handle must refer to a 2-D mesh (z-components of all vertices are zero). The x and y
components are in units of screen pixels.

The mesh may have multiple groups, but generally a single group should be sufficient. The texture
indices of each group refer to the textures in the hTex list (starting with 0). If only a single texture
is used, the texture index in the mesh should be set to 0, and hTex should be a pointer to the surface
handle.

Mesh animations can be applied by modifying vertex and/or texture coordinates at each frame.

7.50.1.16 OAPIFUNC int oapiSendMFDKey (int mfd, DWORD key)
Sends a keystroke to an MFD.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)
key key code (see OAPI_KEY_xxx Constants)

Returns:

nonzero if the MFD understood and processed the key.

Note:

This function can be used to interact with the MFD as if the user had pressed Shift-key, for example to
select a different MFD mode, to select a target body, etc.

See also:

MEFD Identifiers

7.50.1.17 OAPIFUNC void oapiSetDefNavDisplay (int mode)

Defines how the navigation mode buttons will be displayed in a default cockpit view.

Parameters:

mode display mode (O .. 2)

Note:

This function should wusually be called in the body of the overloaded VES-
SEL2::clbkLoadGenericCockpit().
It defines if the buttons for navigation modes (e.g. "Killrot" or "Prograde") are displayed in the generic
(non-panel) cockpit camera mode, and if the buttons can be operated with the mouse.
The following values for mode are defined:

¢ 0 buttons are not shown

* 1 buttons are shown and can be operated with the mouse (default)

* 2 only buttons representing active modes are shown, and can not be operated with the mouse

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 130

7.50.1.18 OAPIFUNC void oapiSetDefRCSDisplay (int mode)

Enable or disable the display of the reaction control system indicators/controls in default cockpit view.

Parameters:

mode display mode (0 .. 1)

Note:

This function should wusually be called in the body of the overloaded VES-
SEL2::clbkLoadGenericCockpit().

The RCS display consists of three buttons in the engine status display at the top left of the generic
cockpit view. If displayed (mode=1), the buttons show the RCS mode (off/rotational/linear), and can
be clicked with the mouse to switch modes.

The following values for mode are defined:

¢ (0 RCS buttons are not shown
* 1 RCS buttons are shown and can be operated with the mouse (default)

7.50.1.19 OAPIFUNC bool oapiSetHUDMode (int mode, const HUDPARAM x prm)
Set HUD (head up display) mode with mode-specific parameters.

Parameters:

mode new HUD mode

prm mode-specific parameters

Returns:

true if mode has changed, false otherwise.

Note:

Mode HUD_NONE will turn off the HUD display.

See constants HUD_xxx for currently supported HUD modes.
See also:

HUD Modes, HUDPARAM, oapiGetHUDMode, oapiGetHUDMode(const HUDPARAM3x)

7.50.1.20 OAPIFUNC bool oapiSetHUDMode (int mode)
Set HUD (head up display) mode.

Parameters:

mode new HUD mode

Returns:

true if mode has changed, false otherwise.

Note:

Mode HUD_NONE will turn off the HUD display.
See constants HUD_xxx for currently supported HUD modes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 131

See also:

HUD Modes, oapiGetHUDMode

7.50.1.21 OAPIFUNC int oapiSetPanel (int panel_id)

Switch to a different instrument panel in 2-D panel cockpit mode.

Parameters:

panel_id panel identifier (>=0)

Returns:
panel_id if the panel was set successfully, or -1 if failed (camera not in 2-D panel cockpit mode, or
requested panel does not exist for the current vessel)

Note:

This function has no effect if the current view is not in 2-D panel cockpit mode.

See also:

oapiSwitchPanel

7.50.1.22 OAPIFUNC void oapiSetPanelNeighbours (int left, int right, int top, int bottom)

Defines the neighbour panels of the current panels. These are the panels the user can switch to via Ctrl-
Arrow keys.

Parameters:

left panel id of left neighbour (or -1 if none)
right panel id of right neighbour (or -1 if none)
top panel id of top neighbour (or -1 if none)

bottom panel id of bottom neighbour (or -1 if none)

Note:

This function should be called during panel registration (in VESSEL2::clbkLoadPanel()) to define the
neighbours of the registered panel.

Every panel (except panel 0) must be listed as a neighbour by at least one other panel, otherwise it is
inaccessible.

7.50.1.23 OAPIFUNC int oapiSwitchPanel (int direction)

Switch to a neighbour instrument panel in 2-D panel cockpit mode.

Parameters:

direction neighbour direction (see notes)

Returns:

Identifier of the newly selected panel (>=0) or -1 if the requested panel does not exist.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.50 HUD, MFD and panel functions 132

Note:

direction can be one of the constants in Panel neighbour identifiers.
The neighbourhood status between panels is established by the oapiSetPanelNeighbours() function.
This function has no effect if the current view is not in 2-D panel cockpit mode.

See also:

oapiSetPanel

7.50.1.24 OAPIFUNC void oapiToggleHUDColour ()
Switch the HUD display to a different colour.

Note:

Orbiter currently defines 3 HUD colours: green, red, white. Calls to oapiToggleHUDColour will cycle
through these.

See also:

oapilncHUDIntensity, oapiDecHUDIntensity

7.50.1.25 OAPIFUNC void oapiToggleMFD_on (int mfd)

Switches an MFD on or off.

Parameters:

mfd MFD identifier (e.g. MFD_LEFT, MFD_RIGHT)

Note:

Flips the on/off state of an MFD. Typically used to respond to the user pressing the "power" button.

See also:

0apiOpenMFD

7.50.1.26 OAPIFUNC void oapiTriggerPanelRedrawArea (int panel_id, int area_id)

Triggers a redraw notification for a panel area.

Parameters:
panel_id panel identifier (>=0)
area_id area identifier (>=0)
Note:

The redraw notification is ignored if the requested panel is not currently displayed.

See also:

oapiTriggerRedrawArea

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.51 Drawing support functions 133

7.50.1.27 OAPIFUNC void oapiTriggerRedrawArea (int panel_id, int vc_id, int area_id)

Triggers a redraw notification to either a 2D panel or a virtual cockpit.

Parameters:

panel_id identifier for the panel to receive the redraw message
ve_id identifier for the virtual cockpit to receive the redraw message

area_id area identifier

Note:

This function can be used to combine the functionality of the oapiTriggerPanelRedrawArea() and
0apiVCTriggerRedrawArea() methods. Depending on the current cockpit mode, Orbiter sends the
redraw request to either ovcPanelRedrawEvent() or oveVCRedrawEvent().

This method can only be used if the panel and virtual cockpit areas share a common area identifier.

7.51 Drawing support functions

Enumerations

e enum FontStyle { FONT_NORMAL = 0, FONT_BOLD = 1, FONT_ITALIC = 2, FONT_-
UNDERLINE =4 }

Functions

* OAPIFUNC oapi::Sketchpad * oapiGetSketchpad (SURFHANDLE surf)

Obtain a drawing context for a surface.

* OAPIFUNC void oapiReleaseSketchpad (oapi::Sketchpad *skp)

Release a drawing device context instance.

* OAPIFUNC oapi::Font * oapiCreateFont (int height, bool prop, char xface, FontStyle style=FONT_-
NORMAL)

Creates a font resource for drawing text into surfaces.

* OAPIFUNC oapi::Font * oapiCreateFont (int height, bool prop, const char «face, FontStyle style, int
orientation)

Creates a font resource for drawing text into surfaces.

* OAPIFUNC void oapiReleaseFont (oapi::Font *font)

Release a font resource.

* OAPIFUNC oapi::Pen * oapiCreatePen (int style, int width, DWORD col)

Creates a pen resource for drawing lines and shape outlines.

* OAPIFUNC void oapiReleasePen (oapi::Pen *pen)

Release a pen resource.

* OAPIFUNC oapi::Brush * oapiCreateBrush (DWORD col)

Creates a brush resource for filling shapes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.51 Drawing support functions 134

* OAPIFUNC void oapiReleaseBrush (oapi::Brush xbrush)

Release a brush resource.

* OAPIFUNC HDC o0apiGetDC (SURFHANDLE surf)
Obtain a Windows device context handle (HDC) for a surface.

* OAPIFUNC void oapiReleaseDC (SURFHANDLE surf, HDC hDC)

Release a GDI drawing device context handle.

7.51.1 Function Documentation

7.51.1.1 OAPIFUNC oapi::Brushx oapiCreateBrush (DWORD col)

Creates a brush resource for filling shapes.

Parameters:

col shape fill colour (format: 0OxXBBGGRR)

Note:

After use, the brush should be deallocated with oapiReleaseBrush.

See also:

oapiReleaseBrush

7.51.1.2 OAPIFUNC oapi::Fontx oapiCreateFont (int height, bool prop, const char * face, FontStyle
style, int orientation)

Creates a font resource for drawing text into surfaces.

Parameters:

height font height [pixel]

prop flag for proportional/fixed pitch font
face typeface name (see notes)

style font decoration style (see notes)

orientation text orientation [1/10 deg]

Returns:

pointer to font resource, or NULL if not supported.

Note:

Identical to oapiCreateFont(int,bool,charx,FontStyle), but contains the additional orientation parame-
ter.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.51 Drawing support functions 135

7.51.1.3 OAPIFUNC oapi::Font+ oapiCreateFont (int keight, bool prop, char * face, FontStyle style
= FONT_NORMAL)

Creates a font resource for drawing text into surfaces.

Parameters:

height font height [pixel]
prop flag for proportional/fixed pitch font
Jace typeface name (see notes)

style font decoration style (see notes)

Returns:

pointer to font resource, or NULL if not supported.

Note:

The following generic typeface names should be understood by all graphics systems:
* Fixed (fixed pitch font)
* Sans (sans-serif proportional font)

* Serif (serif proportional font) Other font names may not be recognised by all graphics clients. In
that case, the default fixed or sans-serif font will be used, depending on the value of prop.

The decoration style flags allow bold, italic and underlining.
After use, the font should be deallocated with oapiReleaseFont.
See also:

oapiReleaseFont

7.51.1.4 OAPIFUNC oapi::Penx oapiCreatePen (int style, int width, DWORD col)

Creates a pen resource for drawing lines and shape outlines.

Parameters:
style line style (O=invisible, 1=solid, 2=dashed)
width line width [pixel]
col line colour (format: 0xBBGGRR)

Note:

After use, the pen should be deallocated with oapiReleasePen.

See also:

oapiReleasePen

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.51 Drawing support functions 136

7.51.1.5 OAPIFUNC HDC oapiGetDC (SURFHANDLE surf)

Obtain a Windows device context handle (HDC) for a surface.

Parameters:

surf surface handle

Returns:

device context handle, or NULL if not supported.

Warning:
This function uses a device-dependent drawing context handle and may not work with all graphics
clients. It has been superseded by oapiGetSketchpad.

Note:

This function returns a valid device handle only when Orbiter is using its inline graphics client, or if
an external client is attached that supports GDI drawing. In all other cases, the function returns NULL.
Therefore, the caller should always check the returned value before using it.

If a nonzero HDC was returned, it should be released with oapiReleaseDC after drawing.

Most graphics clients must lock the surface data buffer (and copy it to main memory, if necessary)
before GDI access can be provided. This means that read/write access to the surface (e.g. for blitting)
may be disabled between 0apiGetDC and oapiReleaseDC, and should be avoided.

See also:

oapiReleaseDC, oapiGetSketchpad

7.51.1.6 OAPIFUNC oapi::Sketchpadx oapiGetSketchpad (SURFHANDLE surf)

Obtain a drawing context for a surface.

Parameters:

surf surface handle

Returns:

drawing context instance, or NULL if no graphics support

Note:

This function returns a valid context instance only when Orbiter is attached to a graphics client which
supports 2-D drawing into surfaces. The caller should check the return value for NULL.

If a nonzero Sketchpad instance was returned, it should be released with oapiReleaseSketchpad after
drawing.

Most graphics clients must lock the surface data buffer (and copy it to main memory, if necessary) be-
fore drawing access can be provided. This means that read/write access to the surface (e.g. for blitting)
may be disabled between oapiGetSketchpad and oapiReleaseSketchpad, and should be avoided.

See also:

oapiReleaseSketchpad

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.51 Drawing support functions 137

7.51.1.7 OAPIFUNC void oapiReleaseBrush (oapi::Brush * brush)
Release a brush resource.
Parameters:

brush pointer to brush resource

See also:

oapiCreateBrush

7.51.1.8 OAPIFUNC void oapiReleaseDC (SURFHANDLE surf, HDC hDC)

Release a GDI drawing device context handle.

Parameters:

surf surface handle
hDC device context handle

Warning:

This function uses a device-dependent drawing context handle and may not work with all graphics
clients. It has been superseded by oapiReleaseSketchpad.

Note:

Use this function to release a device context previously acquired with oapiGetDC.
Standard Windows device context rules apply. For example, any custom device objects loaded via
SelectObject must be unloaded before calling oapiReleaseDC.

See also:

0apiGetDC, oapiGetSketchpad, oapiReleaseSketchpad

7.51.1.9 OAPIFUNC void oapiReleaseFont (oapi::Font * font)

Release a font resource.
Parameters:

Jont pointer to font resource

See also:

oapiCreateFont

7.51.1.10 OAPIFUNC void oapiReleasePen (oapi::Pen * pen)

Release a pen resource.

Parameters:

pen pointer to pen resource

See also:

oapiCreatePen

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.52 Surface functions 138

7.51.1.11 OAPIFUNC void oapiReleaseSketchpad (oapi::Sketchpad * skp)

Release a drawing device context instance.

Parameters:

skp drawing context instance

Note:

Use this function to release a device instance previously acquired with oapiGetSketchpad.

See also:

oapiGetSketchpad

7.52 Surface functions

Functions

* OAPIFUNC SURFHANDLE oapiCreateSurface (int width, int height)

Create a surface of the specified dimensions.

* OAPIFUNC SURFHANDLE oapiCreateSurface (HBITMAP hBmp, bool release_bmp=true)

Create a surface from a bitmap. Bitmap surfaces are typically used for blitting operations during instrument
panel redraws.

* OAPIFUNC SURFHANDLE oapiCreateTextureSurface (int width, int height)

Create a surface that can be used as a texture for a 3-D object.

* OAPIFUNC void oapiDestroySurface (SURFHANDLE surf)

Destroy a surface previously created with oapiCreateSurface.

* OAPIFUNC void oapiClearSurface (SURFHANDLE surf, DWORD col=0)
* OAPIFUNC void oapiSetSurfaceColourKey (SURFHANDLE surf, DWORD ck)

Define a colour key for a surface to allow transparent blitting.

* OAPIFUNC void oapiClearSurfaceColourKey (SURFHANDLE surf)

Clear a previously defined colour key.

* OAPIFUNC void oapiBlt (SURFHANDLE tgt, SURFHANDLE src, int tgtx, int tgty, int srcx, int
srcy, int w, int h, DWORD ck=SURF_NO_CK)

Copy a rectangular area from one surface to another.

* OAPIFUNC void oapiBlt (SURFHANDLE tgt, SURFHANDLE src, RECT sxtgtr, RECT sxsrcr,
DWORD ck=SURF_NO_CK, DWORD rotate=SURF_NO_ROTATION)

Copy a scaled rectangular area from one surface to another.

* OAPIFUNC void oapiColourFill (SURFHANDLE tgt, DWORD fillcolor, int tgtx=0, int tgty=0, int
w=0, int h=0)

Fill an area of the target surface with a uniform colour.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.52 Surface functions 139

7.52.1 Function Documentation

7.52.1.1 OAPIFUNC void oapiBlt (SURFHANDLE tgt, SURFHANDLE src, RECT x tgtr, RECT %
srcr, DWORD ck = SURF_NO_CK, DWORD rotate = SURF_NO_ROTATION)

Copy a scaled rectangular area from one surface to another.

Parameters:

tgt target surface

src¢ source surface

tgtr pointer to target rectangle [pixel]

srcr pointer to source rectangle [pixel]

ck transparency colour key (inline graphics only)

rotate rotation flag (deprecated)

Note:

This function copies a rectangluar area from a source to a target surface.

If the sizes of the source and target rectangles differ, the copied area is stretched or shrunk to fit into
the target rectangle.

This function must not be used while a device context is acquired for the target surface (i.e. between
0apiGetDC and oapiReleaseDC calls).

Transparent blitting can be performed by specifying a colour key in ck. The transparent colour can
either be passed explicitly in ck, or ck can be set to SURF_PREDEF_CK to use the key previously
defined with oapiSetSurfaceColourKey.

Colour keys are only supported with Orbiter’s inline graphics client. External clients ignore the ck
parameter. The use of colour keys is therefore discouraged.

The rotation flag is deprecated. It has no effect.

7.52.1.2 OAPIFUNC void oapiBlt (SURFHANDLE ¢gt, SURFHANDLE src, int fgtx, int fgty, int
srex, int srey, int w, int , DWORD ck = SURF_NO_CK)

Copy a rectangular area from one surface to another.

Parameters:

tgt target surface

src source surface

tgtx left edge of target rectangle [pixel]
tgty top edge of target rectangle [pixel]
srcx left edge of source rectangle [pixel]
srcy top edge of source rectangle [pixel]
w width of copied rectangle [pixel]

h height of copied rectangle [pixel]

ck transparency colour key (inline graphics only)

Note:

This function copies rectangular areas between two surfaces, or between two locations of the same
surface.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.52 Surface functions 140

A typical use is the dynamic update of instrument panels, e.g. in the body of VES-
SEL2::clbkPanelRedrawEvent.

This function must not be used while a device context is acquired for the target surface (i.e. between
0apiGetDC and oapiReleaseDC calls). If a blitting operation is necessary between oapiGetDC and
oapiReleaseDC, you must use the standard Windows BitBIt function. However this does not use
hardware acceleration and should therefore be avoided.

Transparent blitting can be performed by specifying a colour key in ck. The transparent colour can
either be passed explicitly in ck, or ck can be set to SURF_PREDEF_CK to use the key previously
defined with oapiSetSurfaceColourKey.

Colour keys are only supported with Orbiter’s inline graphics client. External clients ignore the ck
parameter. The use of colour keys is therefore discouraged.

7.52.1.3 OAPIFUNC void oapiClearSurfaceColourKey (SURFHANDLE surf)

Clear a previously defined colour key.

Parameters:

surf surface handle

See also:

oapiSetSurfaceColourKey, oapiBlt

7.52.1.4 OAPIFUNC void oapiColourFill (SURFHANDLE #gt, DWORD fillcolor, int tgtx = 0, int
tgty =0,int w = 0, int h = 0)

Fill an area of the target surface with a uniform colour.

Parameters:

tgt target surface

fillcolor fill colour

tgtx coordinate of upper left corner of area to fill.
tgty coordinate of upper left corner of area to fill.
w width of area to fill.

h height of area to fill.

Note:

The fill colour should be acquired with oapiGetColour(), to ensure compatibility with 16-bit colour
modes.

This function must not be used while a device context is acquired for the target surface (i.e. between
0apiGetDC() and oapiReleaseDC() calls).

If w and h are zero (the default) the whole surface is filled. The tgtx and tgty values are ignored in that
case and can be omitted.

7.52.1.5 OAPIFUNC SURFHANDLE oapiCreateSurface (HBITMAP hBmp, bool release_bmp =
true)

Create a surface from a bitmap. Bitmap surfaces are typically used for blitting operations during instrument
panel redraws.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.52 Surface functions 141

Parameters:

hBmp bitmap handle

release_bmp flag for bitmap release

Returns:

Handle to the new surface.

Note:

The easiest way to access bitmaps is by storing them as resources in the module, and loading them via
a call to LoadBitmap.

Do not use this function with a bitmap generated by CreateBitmap. To create a surface of specified
dimensions, use oapiCreateSurface (width, height) instead.
If release_bmp==true, then oapiCreateSurface() will destroy the bitmap after creating a surface from
it (i.e. the hBmp handle will be invalid after the function returns), otherwise the module is responsible
for destroying the bitmap by a call to DestroyObject when it is no longer needed.
Surfaces should be destroyed by calling oapiDestroySurface when they are no longer needed.

See also:

oapiDestroySurface

7.52.1.6 OAPIFUNC SURFHANDLE oapiCreateSurface (int width, int height)

Create a surface of the specified dimensions.

Parameters:

width width of surface bitmap (pixels)
height height of surface bitmap (pixels)

Returns:

Handle to the new surface.

Note:

The bitmap contents are undefined after creation, so the surface must be repainted fully before mapping
it to the screen.

If you want to use the surface as a texture, use oapiCreateTextureSurface instead.

Surfaces should be destroyed by calling oapiDestroySurface when they are no longer needed.

See also:

oapiDestroySurface

7.52.1.7 OAPIFUNC SURFHANDLE oapiCreateTextureSurface (int width, int height)

Create a surface that can be used as a texture for a 3-D object.

Parameters:

width width of surface bitmap (pixels)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.53 Custom MFD mode definition 142

height height of surface bitmap (pixels)

Returns:

handle of new texture surface

Note:

Use this function instead of oapiCreateSurface if you want the surface to be used as a surface texture
for a 3-D object, for example via a call to oapiSetTexture.

For maximum compatibility, the surface should be square, and dimensions powers of 2, for example
64x64, 128x128, 256x256, etc. Note that older video cards may not support textures larger than
256x256.

Surfaces should be destroyed by calling oapiDestroySurface when they are no longer needed.

7.52.1.8 OAPIFUNC void oapiDestroySurface (SURFHANDLE surf)

Destroy a surface previously created with oapiCreateSurface.

Parameters:

surf surface handle

7.52.1.9 OAPIFUNC void oapiSetSurfaceColourKey (SURFHANDLE surf, DWORD ck)

Define a colour key for a surface to allow transparent blitting.

Parameters:

surf surface handle
ck colour key (0xXRRGGBB)

Note:

Defining a colour key and subsequently calling oapiBlt with the SURF_PREDEF_CK flag is slightly
more efficient than passing the colour key explicitly to oapiBlt each time, if the same colour key is
used repeatedly.

See also:

oapiClearSurfaceColourKey, oapiBlt

7.53 Custom MFD mode definition

Functions

* OAPIFUNC int oapiRegisterMFDMode (MFDMODESPECEX &spec)

Register a custom MFD mode.

* OAPIFUNC bool oapiUnregisterMFDMode (int mode)

Unregister a previously registered custom MFD mode.

* OAPIFUNC void oapiDisableMFDMode (int mode)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.53 Custom MFD mode definition 143

Disable an MFD mode.

* OAPIFUNC int oapiGetMFDModeSpecEx (char xname, MFDMODESPECEX x*xspec=0)
Returns the mode identifier and spec for an MFD mode defined by its name.

7.53.1 Function Documentation

7.53.1.1 OAPIFUNC void oapiDisableMFDMaode (int mode)
Disable an MFD mode.

Parameters:

mode MFD mode to be disabled.

Note:

The list of disabled MFDs is cleared whenever the focus switches to a new vessel. To disable MFD
modes permanently for a particular vessel type, oapiDisableMFDMode() should be called from within
the ovcFocusChanged() callback function.

For builtin MFD modes, mode can be any of the MFD_xxx constants. For MFD modes defined in
plugin modules, the mode id must be obtained by a call to oapiGetMFDModeSpec().

See also:

MFD Modes

7.53.1.2 OAPIFUNC int oapiGetMFDModeSpecEx (char « name, MFDMODESPECEX xx spec =
0)

Returns the mode identifier and spec for an MFD mode defined by its name.

Parameters:

name MFD name (as defined in MFDMODESPECEX::name during oapiRegisterMFDMode())
spec If defined, this will return a pointer to the MFDMODESPECEX structure for the mode.

Returns:

MFD mode identifier.

Note:

This function returns the same value as oapiRegisterMFDMode() for the given mode.

If no matching mode is found, the return value is MFD_NONE. In that case, the returned spec pointer
is undefined.

The mode identifiers for custom MFD modes can not be assumed to persist across simulation runs,
since they will change if the user loads or unloads MFD plugins.

This function can also be used for built-in MFD modes, which are defined as follows:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.53 Custom MFD mode definition

144

Name string Mode identifier
Orbit MFD_ORBIT
Surface MFD_SURFACE
Map MFD_MAP

HSI MFD_HSI
VOR/VTOL MFD_LANDING
Docking MFD_DOCKING
Align Planes MFD_OPLANEALIGN
Sync Orbit MFD_OSYNC
Transfer MFD_TRANSFER
COM/NAV MFD_COMMS

7.53.1.3 OAPIFUNC int oapiRegisterMFDMode (MFDMODESPECEX & spec)

Register a custom MFD mode.

Parameters:

spec MFD specs (see notes below)

Returns:

MFD mode identifier

Note:

This function registers a custom MFD mode with Orbiter. There are two types of custom MFDs:
generic and vessel class-specific. Generic MFD modes are available to all vessel types, while spe-
cific modes are only available for a single vessel class. Generic modes should be registered in the
InitModule callback function of a plugin module. Vessel class specific modes are not implemented
yet.
MFDMODESPECEX is a struct defining the parameters of the new mode:
typedef struct {

char xname; // points to the name of the new mode

DWORD key; // mode selection key

void *context; // mode-specific context pointer

int (*msgproc) (UINT,UINT, WPARAM, LPARAM) ; // address of MFD message parser
} MFDMODESPEC;

See orbitersdk\samples\CustomMFD for a sample MFD mode implementation.

See also:

oapiUnregisterMFDMode

7.53.1.4 OAPIFUNC bool oapiUnregisterMFDMaode (int mode)

Unregister a previously registered custom MFD mode.

Parameters:

mode mode identifier, as returned by oapiRegisterMFDMode

Returns:

true on success (mode could be unregistered).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.54 Virtual cockpit functions 145

7.54 Virtual cockpit functions

Functions

* OAPIFUNC void oapiVCRegisterMFD (int mfd, const VCMFDSPEC xspec)
Define a render target for rendering an MFD display in a virtual cockpit.

¢ OAPIFUNC void oapiVCRegisterArea (int id, const RECT &tgtrect, int draw_event, int mouse_-
event, int bkmode, SURFHANDLE tgt)

Define an active area in a virtual cockpit. Active areas can be repainted. This function is similar to oapiReg-
isterPanelArea.

* OAPIFUNC void oapiVCRegisterArea (int id, int draw_event, int mouse_event)

Define an active area in a virtual cockpit. This version is used when no dynamic texture update is required
during redraw events.

* OAPIFUNC void oapiVCSetAreaClickmode_Spherical (int id, const VECTOR3 &cnt, double rad)

Associate a spherical region in the virtual cockpit with a registered area to receive mouse events.

* OAPIFUNC void oapiVCSetAreaClickmode_Quadrilateral (int id, const VECTOR3 &pl, const
VECTOR3 &p2, const VECTOR3 &p3, const VECTOR3 &p4)

Associate a quadrilateral region in the virtual cockpit with a registered area to receive mouse events.

* OAPIFUNC void oapiVCSetNeighbours (int left, int right, int top, int bottom)

Defines the neighbouring virtual cockpit camera positions in relation to the current position. The user can
switch to neighbour positions with Ctrl-Arrow keys.

* OAPIFUNC void oapiVCTriggerRedrawArea (int vc_id, int area_id)

Triggers a redraw notification for a virtual cockpit area.

* OAPIFUNC void oapiVCRegisterHUD (const VCHUDSPEC xspec)
Define a render target for the head-up display (HUD) in a virtual cockpit.

7.54.1 Function Documentation

7.54.1.1 OAPIFUNC void oapiVCRegisterArea (int id, int draw_event, int mouse_event)

Define an active area in a virtual cockpit. This version is used when no dynamic texture update is required
during redraw events.

Parameters:

id area identifier
draw_event redraw condition (see draw events)

mouse_event mouse event (see mouse events)

Note:
This function is equivalent to:

oapiVCRegisterArea (aid, _R(0,0,0,0), draw_event,mouse_event, PANEL_MAP_NONE, NULL);

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.54 Virtual cockpit functions 146

7.54.1.2 OAPIFUNC void oapiVCRegisterArea (int id, const RECT & tgtrect, int draw_event, int
mouse_event, int bkmode, SURFHANDLE #gt)

Define an active area in a virtual cockpit. Active areas can be repainted. This function is similar to
oapiRegisterPanel Area.

Parameters:

id area identifier

tgtrect bounding box of the active area in the target texture (pixels)
draw_event redraw condition (see draw events)

mouse_event mouse event (see mouse events)

bkmode background mode (see bkmodes)

tgt target texture to be updated

Note:

The target texture can be retrieved from a mesh by using the oapiGetTextureHandle() method. Dy-
namic textures must be marked with flag "D" in the mesh file.

Redraw events can be used not only to update mesh textures dynamically, but also to animate mesh
groups, or edit mesh vertices or texture coordinates.

If no dynamic texture repaints are required during redraw events, use the alternative version of
oapiVCRegisterArea() instead.

To define a mouse-sensitive volume in the virtual cockpit, use one of the oapiVCSetAreaClickmode._-
XXX functions.

7.54.1.3 OAPIFUNC void oapiVCRegisterHUD (const VCHUDSPEC x spec)
Define a render target for the head-up display (HUD) in a virtual cockpit.

Parameters:

spec hud specification (see notes)

Note:

This function should be placed in the body of the VESSEL2::0vcLoadVC() vessel module callback
function.
VCHUDSPEC is a structure defined as:

struct VCHUDSPEC {
DWORD nmesh; // mesh index
DWORD ngroup; // group index
VECTOR3 hudcnt; // HUD centre in vessel frame
double size; // physical size of the HUD [m]
}i

The mesh group specified by nmesh and ngroup should be a square panel in front of the camera position
in the virtual cockpit. This group is rendered separately from the rest of the mesh and should therefore
have FLAG 2 set in the mesh file. The group material and texture can be set to 0.

The HUD centre position and size are required to allow Orbiter to correctly scale the display.

Orbiter renders the HUD with completely transparent background. Rendering the glass pane, brackets,
etc. is up to the vessel designer.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.54 Virtual cockpit functions 147

7.54.1.4 OAPIFUNC void oapiVCRegisterMFD (int mfd, const VCMFDSPEC x spec)

Define a render target for rendering an MFD display in a virtual cockpit.

Parameters:

mfd MFD identifier (e.g. MED_LEFT, MFD_RIGHT)

spec render target specification (see notes)

Note:
The render target specification is defined as a structure:

struct VCMFDSPEC { DWORD nmesh, ngroup };

where nmesh is the mesh index (>=0), and ngroup is the group index (>=0) defining the render target.
This function should be placed in the body of the ovcLoadVC vessel module callback function.

The addressed mesh group should define a simple square (4 vertices, 2 triangles). The group materials
and textures can be set to 0.

See also:

MEFD Identifiers

7.54.1.5 OAPIFUNC void oapiVCSetAreaClickmode_Quadrilateral (int id, const VECTOR3 & p1,
const VECTORS3 & p2, const VECTOR3 & p3, const VECTORS3 & p4)

Associate a quadrilateral region in the virtual cockpit with a registered area to receive mouse events.

Parameters:

id area identifier (as specified during area registration)
pl1 top left corner of region

p2 top right corner

p3 bottom left corner

p4 bottom right corner

Note:

This function will trigger mouse events when the user clicks within the projection of the quadrilateral
region on the render window. The mouse event handler will receive the relative position within the area
at which the mouse event occurred, where the top left corner has coordinates (0,0), and the bottom right
corner has coordinates (1,1).

The area can define any flat quadrilateral in space. It is not limited to rectangles, but all 4 points should
be in the same plane.

See also:

VESSEL2::clbkVCMouseEvent

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.54 Virtual cockpit functions 148

7.54.1.6 OAPIFUNC void oapiVCSetAreaClickmode_Spherical (int id, const VECTOR3 & cnt,
double rad)

Associate a spherical region in the virtual cockpit with a registered area to receive mouse events.

Parameters:

id area identifier (as specified during area registration)
cnt centre of active area in the local vessel frame

rad radius of active area [m]

Note:

The area identifier must refer to an area which has previously been registered with a call to oapiVCReg-
isterArea(), with the required mouse event modes.
This function can be called repeatedly, to change the mouse-sensitive area.

See also:

VESSEL2::clbkVCMouseEvent

7.54.1.7 OAPIFUNC void oapiVCSetNeighbours (int left, int right, int top, int bottom)

Defines the neighbouring virtual cockpit camera positions in relation to the current position. The user can
switch to neighbour positions with Ctrl-Arrow keys.

Parameters:

left panel id of left neighbour position (or -1 if none)
right panel id of right neighbour position (or -1 if none)
top panel id of top neighbour position (or -1 if none)

bottom panel id of bottom neighbour position (or -1 if none)

Note:

This function should be called during virtual cockpit registration (in VESSEL2::clbkLoadVC()) to
define the neighbouring cockpit camera positions, if any.

The left, right, top and bottom values specify the (zero-based) identifiers of the VC positions to switch
to when the user presses Ctrl and an arrow button, or -1 if no position is available in this direction.
The neighbour relations should normally be reciprocal, i.e. if position 0 defines position 1 as its right
neighbour, then position 1 should define position O as its left neighbour.

If only a single VC position (id 0) is defined, this function doesn’t need to be called.

Orbiter calls VESSEL?2::clbkLLoadVC() with the appropriate id whenever the user switches to a new
position.

7.54.1.8 OAPIFUNC void oapiVCTriggerRedrawArea (int vc_id, int area_id)

Triggers a redraw notification for a virtual cockpit area.

Parameters:

ve_id virtual cockpit identifier

area_id area identifier (as specified during area registration)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 149

Note:

This function triggers a call to the VESSEL2::ovcVCRedrawEvent() callback function in the vessel
module.

The redraw notification is normally only sent if vc_id is equal to the currently active virtual cockpit
position (>=0). To invoke the redraw notification independent of the currently active position, set
vc_id to -1.

7.55 Customisation - custom menu, dialogs

Typedefs

¢ typedef void(x CustomFunc)(void *context)

Functions

¢ OAPIFUNC LAUNCHPADITEM_HANDLE oapiRegisterLaunchpadltem (Launchpadltem sxitem,
LAUNCHPADITEM_HANDLE parent=0)

Register a new item in the parameter list of the "Extra" tab of the Orbiter Launchpad dialog.

* OAPIFUNC bool oapiUnregisterLaunchpadltem (LaunchpadItem sxitem)

Unregister a previously registered entry in the "Extra" tab of the Orbiter Launchpad dialog.

* OAPIFUNC LAUNCHPADITEM_HANDLE oapiFindLaunchpadltem (const char xname=0,
LAUNCHPADITEM_HANDLE parent=0)

Returns a handle for an existing entry in the Extra parameter list.

* OAPIFUNC DWORD oapiRegisterCustomCmd (char *label, char *desc, CustomFunc func, void
*context)

Register a custom function. Custom functions can be accessed in Orbiter by pressing Ctrl-F4. A common
use for custom functions is opening plugin dialog boxes.

* OAPIFUNC bool oapiUnregisterCustomCmd (int cmdId)

Unregister a previously defined custom function.

* OAPIFUNC HWND oapiOpenDialog (HINSTANCE hDLLlInst, int resourceld, DLGPROC msg-
Proc, void xcontext=0)

Open a dialog box defined as a Windows resource.

¢ OAPIFUNC HWND oapiOpenDialogEx (HINSTANCE hDLLInst, int resourceld, DLGPROC msg-
Proc, DWORD flag=0, void *context=0)

Open a dialog box defined as a Windows resource. This version provides additional functionality compared
to oapiOpenDialog().

* OAPIFUNC HWND oapiFindDialog (HINSTANCE hDLLInst, int resourceld)
Returns the window handle of an open dialog box, or NULL if the specified dialog box is not open.

* OAPIFUNC void oapiCloseDialog (HWND hDlg)

Close a dialog box.

OAPIFUNC void * oapiGetDialogContext (HWND hDIg)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 150

Retrieves the context pointer of a dialog box which has been defined during the call to oapiOpenDialog().

* OAPIFUNC bool oapiRegisterWindow (HINSTANCE hDLLInst, HWND hWnd, DWORD flag=0)

* OAPIFUNC bool oapiAddTitleButton (DWORD msgid, HBITMAP hBmp, DWORD flag)
Adds a custom button in the title bar of a dialog box.

¢ OAPIFUNC DWORD oapiGetTitleButtonState (HWND hDIg, DWORD msgid)

* OAPIFUNC bool oapiSetTitleButtonState (HWND hDIg, DWORD msgid, DWORD state)

* OAPIFUNC BOOL oapiDefDialogProc (HWND hDIlg, UINT uMsg, WPARAM wParam, LPARAM
IParam)

Default Orbiter dialog message handler.

* OAPIFUNC bool oapiOpenHelp (HELPCONTEXT xhcontext)
Opens the ingame help window on the specified help page.

* OAPIFUNC bool oapiOpenLaunchpadHelp (HELPCONTEXT xhcontext)

Opens a help window outside a simulation session, i.e. when the Launchpad dialog is displayed.

7.55.1 Function Documentation

7.55.1.1 OAPIFUNC bool oapiAddTitleButton (DWORD msgid, HBITMAP hBmp, DWORD flag)

Adds a custom button in the title bar of a dialog box.

Parameters:

msgid The message identifier generated by pressing the button
hBmp bitmap containing the button images.

flag additional parameters (see notes)

Returns:

true if the button could be created, false otherwise.

Note:

oapiAddTitleButton can only be called while processing the WM_INITDIALOG message in the dialog
message procedure.

Up to 5 buttons can be created in the title bar, including the standard buttons defined in the call to
oapiOpenDialogEx.

Whenever the users left-clicks on the button, a WM_COMMAND message is generated in the message
procedure, where the low-word of the WPARAM parameter is set to msgid.

The button size defined in the bitmap should be 15x15 pixels large. Their look should conform to
Orbiter’s standard dialog buttons.

The following bit-flags in the flag parameter are currently supported: DLG_CB_TWOSTATE: The
button has two states, and clicking on it will flip between the two states.

If the DLG_CB_TWOSTATE flag is set, the bitmap must be 15x30 pixels large, containing two images,
where the upper image represents the initial state, and the lower image represents the "checked" state.
If the DLG_CB_TWOSTATE flag is set, the button state (0 or 1) is passed in the high-word of the
WPARAM parameter whenever the dialog is notified of a button press.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 151

7.55.1.2 OAPIFUNC void oapiCloseDialog (HWND hDig)
Close a dialog box.

Parameters:

hDlg dialog window handle (as obtained by oapiOpenDialog)

Note:

This function should be called in response to an IDCANCEL message in the dialog message handler to
close a dialog which was opened by oapiOpenDialog().

7.55.1.3 OAPIFUNC BOOL oapiDefDialogProc (HWND #Dlg, UINT uMsg, WPARAM wParam,
LPARAM [Param)

Default Orbiter dialog message handler.

This function should be called from the message handler of all dialogs created with oapiOpenDialog to
perform default actions for any messages not processed in the handler.

Parameters:

The parameters passed to the message handler.

Returns:

The value returned by oapiDefDialogProc should be returned by the message handler.
Typical usage:

BOOL CALLBACK MsgProc (HWND hDlg, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
switch (uMsg) {
case WM_COMMAND :
switch (LOWORD (wParam)) {
case IDCANCEL: // dialog closed by user
CloseDlg (hDlg);
return TRUE;
}
break;
// add more messages to be processed here
}
return oapiDefDialogProc (hDlg, uMsg, wParam, lParam);

}

Note:

oapiDefDialogProc currently only processes the WM_SETCURSOR message, and always returns
false.

See also:

oapiCloseDialog, oapiFindDialog, oapiOpenDialog

7.55.1.4 OAPIFUNC HWND oapiFindDialog (HINSTANCE hDLLInst, int resourceld)

Returns the window handle of an open dialog box, or NULL if the specified dialog box is not open.

Parameters:

hDLLInst module instance handle (as obtained from InitModule)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 152

resourceld dialog resource identifier

Returns:

Window handle of dialog box, or NULL if the dialog was not found.

7.55.1.5 OAPIFUNC LAUNCHPADITEM_HANDLE oapiFindLaunchpadItem (const char * name
= 0, LAUNCHPADITEM_HANDLE parent = 0)

Returns a handle for an existing entry in the Extra parameter list.

Parameters:

name the name of the item in the list (or O for first entry)

parent the parent item below which to search (or O for root)

Returns:

value Item handle if found, or O otherwise.

Note:

This method allows to retrieve the handle of an already existing entry in the Extra list. It is useful for
placing new items below a parent that wasn’t defined by the module itself.

It can be used iteratively to search for lower-level entries.

If name is not set, the first child entry of parent is returned (or the first root entry, if parent==0).

You should only attach children to items that don’t themselves define an activation method.

See also:

oapiRegisterLaunchpadltem, oapiUnregisterLaunchpadltem

7.55.1.6 OAPIFUNC voidx oapiGetDialogContext (HWND hDlg)

Retrieves the context pointer of a dialog box which has been defined during the call to oapiOpenDialog().

Parameters:

hDIg dialog window handle

Note:

This function returns NULL if no context pointer was specified in oapiOpenDialog().

7.55.1.7 OAPIFUNC HWND oapiOpenDialog (HINSTANCE iDLLInst, int resourceld, DLGPROC
msgProc, void * context = 0)

Open a dialog box defined as a Windows resource.

Parameters:

hDLLInst module instance handle (as obtained from InitModule)

resourceld dialog resource identifier

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 153

msgProc pointer to Windows message handler

context optional user-defined pointer

Returns:

handle of the new dialog box, or NULL if the dialog was open already.

Note:

Use oapiOpenDialog() instead of standard Windows methods such as CreateWindow or DialogBox, to
make sure the dialog works in fullscreen mode.

Only one instance of a dialog box can be open at a time. A second call to oapiOpenDialog() with the
same dialog id will fail and return NULL.

The interface of the message handler is as follows:

BOOL CALLBACK MsgProc (HWND hDlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

See standard Windows documentation for usage of the dialog message handler.

The context pointer can be set to user-defined data which can be retrieved via the oapiGetDialogCon-
text() function. This allows to pass data into the message handler.

Note that oapiGetDialogContext() can not be used when processing the WM_INITDIALOG message.
In this case, the context pointer can be acessed via IParam instead.

See also:

oapiFindDialog, oapiCloseDialog, oapiOpenDialogEx

7.55.1.8 OAPIFUNC HWND oapiOpenDialogEx (HINSTANCE hDLLInst, int resourceld, DL-
GPROC msgProc, DWORD flag = 0, void * context = 0)

Open a dialog box defined as a Windows resource. This version provides additional functionality compared
to oapiOpenDialog().

Parameters:

hDLLInst module instance handle (as obtained from InitModule)
resourceld dialog resource identifier

msgProc pointer to Windows message handler

flag bit-flags to define dialog box options (see notes)

context optional user-defined pointer

Returns:

handle of the new dialog box, or NULL if the box could not be opened.

Note:

The flag parameter can be a combination of the following values:

e DLG_ALLOWMULTI: Allows multiple instances of the same dialog resource to be open simul-
taneously.

* DLG_CAPTIONCLOSE: Shows a Close button in the dialog title bar. Pressing it produces an
IDCANCEL notification to the message procedure.

e DLG_CAPTIONHELP: Shows a Help button in the dialog title bar. Pressing it produces an
IDHELP notification to the message procedure.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 154

If customised title bar buttons are requested, the dialog box template should not contain standard title
buttons, by omitting the WS_SYSMENU window style.
Additional buttons can be created by using the oapiAddTitleButton function.

See also:

oapiFindDialog, oapiCloseDialog, oapiGetDialogContext

7.55.1.9 OAPIFUNC bool oapiOpenHelp (HELPCONTEXT x* hcontext)
Opens the ingame help window on the specified help page.

Parameters:

hcontext help context structure.

Returns:

Currently always returns frue.

7.55.1.10 OAPIFUNC bool oapiOpenLaunchpadHelp (HELPCONTEXT = hcontext)

Opens a help window outside a simulation session, i.e. when the Launchpad dialog is displayed.

Parameters:

hcontext help context structure.

Returns:

Currently always returns frue.

7.55.1.11 OAPIFUNC DWORD oapiRegisterCustomCmd (char * label, char * desc, CustomFunc
Junc, void context)

Register a custom function. Custom functions can be accessed in Orbiter by pressing Ctrl-F4. A common
use for custom functions is opening plugin dialog boxes.
Parameters:

label label to appear in the custom function list.
desc a short description of the function
Junc pointer to the function to be executed

context pointer to custom data which will be passed to func

Returns:

function identifier

Note:
The interface of the custom function is defined as follows:

typedef void (xCustomFunc) (void xcontext)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.55 Customisation - custom menu, dialogs 155

where context is the pointer passed to oapiRegisterCustomCmd().

See also:

oapiUnregisterCustomCmd

7.55.1.12 OAPIFUNC LAUNCHPADITEM_HANDLE oapiRegisterLaunchpadltem (Launchpa-
dItem x item, LAUNCHPADITEM_HANDLE parent = 0)

Register a new item in the parameter list of the "Extra" tab of the Orbiter Launchpad dialog.

Parameters:

item pointer to Launchpadltem structure (see notes)

parent parent item, or NULL for root item

Returns:

Handle for the new item

Note:

The "Extra" list of the Launchpad dialog is customisable and can be used by modules to allow user
selection of global parameters and settings. Data can be written to/read from file and therefore persist
across Orbiter sessions.

Item is a pointer to a class instance derived from Launchpadltem. It defines what is displayed in the
list, and how the user accesses the item.

Items can be arranged in a hierarchy. Child items can be defined by passing the handle of a previous
item as the parent parameter.

If an entry with the same name as item->Name() already exists, no new entry is generated, and the
handle of the existing entry is returned.

Because double-clicking on an item both activates it and expands the child list of parent items, parent
items should be inert (i.e. should not define their clbkOpen method) to avoid ambiguities.
oapiRegisterLaunchpadltem() should usually be called during the DLL initialisation function. A
matching oapiUnregisterLaunchpadItem() should be called during the DLL exit function.

See also:

oapiUnregisterLaunchpadltem, oapiFindLaunchpadItem

7.55.1.13 OAPIFUNC bool oapiUnregisterCustomCmd (int crdId)

Unregister a previously defined custom function.

Parameters:

cmdld custom function identifier (as returned by oapiRegisterCustomCmd())

Returns:

false indicates failure (cmdld not recognised)

See also:

oapiRegisterCustomCmd

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 156

7.55.1.14 OAPIFUNC bool oapiUnregisterLaunchpadltem (Launchpadltem item)

Unregister a previously registered entry in the "Extra" tab of the Orbiter Launchpad dialog.

Parameters:

item handle of the item to be removed

Returns:

value true if item could be unregistered, false if no matching item was found.

Note:

A module must unregister all the launchpad items it has registered before it is unloaded, at the latest
during ExitModule. Failing to do so will leave stale items in the parameter list of the Extra tab, leading
to undefined behaviour.

See also:

oapiRegisterLaunchpadltem, oapiFindLaunchpadltem

7.56 File 10 Functions

Functions

¢ OAPIFUNC FILEHANDLE oapiOpenFile (const char xfname, FileAccessMode mode, PathRoot
root=ROO0OT)

Open a file for reading or writing.

* OAPIFUNC void oapiCloseFile (FILEHANDLE file, FileAccessMode mode)

Close a file after reading or writing.

* OAPIFUNC bool oapiSaveScenario (const char sfname, const char *desc)

Writes the current simulation state to a scenario file.

* OAPIFUNC void oapiWriteLine (FILEHANDLE file, char xline)

Writes a line to a file.

* OAPIFUNC void oapiWriteLog (char xline)

Writes a line to the Orbiter log file (orbiter.log) in the main orbiter directory.

* OAPIFUNC void oapiWriteScenario_string (FILEHANDLE scn, char *item, char #string)

Writes a string-valued item to a scenario file.

* OAPIFUNC void oapiWriteScenario_int (FILEHANDLE scn, char xitem, int i)

Writes an integer-valued item to a scenario file.

* OAPIFUNC void oapiWriteScenario_float (FILEHANDLE scn, char xitem, double d)

Writes a floating point-valued item to a scenario file.

¢ OAPIFUNC void oapiWriteScenario_vec (FILEHANDLE scn, char xitem, const VECTOR3
&vec)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56

File IO Functions

157

Writes a vector-valued item to a scenario file.

OAPIFUNC bool oapiReadScenario_nextline (FILEHANDLE scn, char *&line)

Reads an item from a scenario file.

OAPIFUNC bool oapiReadltem_string (FILEHANDLE f, char xitem, char *string)

Read the value of a tag from a configuration file.

OAPIFUNC bool oapiReadltem_float (FILEHANDLE f, char xitem, double &d)

Read the value of a tag from a configuration file.

OAPIFUNC bool oapiReadltem_int (FILEHANDLE f, char xitem, int &i)

Read the value of a tag from a configuration file.

OAPIFUNC bool oapiReadltem_bool (FILEHANDLE f, char xitem, bool &b)

Read the value of a tag from a configuration file.

OAPIFUNC bool oapiReadltem_vec (FILEHANDLE f, char xitem, VECTOR3 &vec)

Read the value of a tag from a configuration file.

OAPIFUNC void oapiWriteltem_string (FILEHANDLE f, char *item, char *string)

Write a tag and its value to a configuration file.

OAPIFUNC void oapiWriteltem_float (FILEHANDLE f, char xitem, double d)

Write a tag and its value to a configuration file.

OAPIFUNC void oapiWriteltem_int (FILEHANDLE f, char xitem, int i)

Write a tag and its value to a configuration file.

OAPIFUNC void oapiWriteltem_bool (FILEHANDLE f, char xitem, bool b)

Write a tag and its value to a configuration file.

OAPIFUNC void oapiWriteltem_vec (FILEHANDLE f, char *item, const VECTOR3 &vec)

Write a tag and its value to a configuration file.

7.56.1 Function Documentation

7.56.1.1 OAPIFUNC void oapiCloseFile (FILEHANDLE file, FileAccessMode mode)

Close a file after reading or writing.

Parameters:

file file handle

mode access mode with which the file was opened

Note:

Use this function on files opened with oapiOpenFile after finishing with it.
The file access mode passed to oapiCloseFile must be the same as used to open it.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 158

7.56.1.2

OAPIFUNC FILEHANDLE oapiOpenFile (const char * frame, FileAccessMode mode,

PathRoot root = ROOT)

Open a file for reading or writing.

Parameters:

Jname file name (with optional path)

mode read/write mode (see notes)

root path origin (see notes)

Returns:

file handle

Note:

The following access modes are supported:

FILE_IN read
FILE_OUT write (overwrite)
FILE_APP write (append)

The file path defined in fname is relative to either the main Orbiter folder or to one of Orbiter’s default
subfolders, depending on the root parameter:

L]

ROOT Orbiter main directory

CONF IG Orbiter config folder

SCENARTOS Orbiter scenarios folder
TEXTURES Orbiter standard texture folder
TEXTURES?2 Orbiter high-res texture folder
MESHES Orbiter mesh folder

MODULES Orbiter module folder

You should always specify a standard Orbiter subfolder by the above mechanism, rather than manually
as a path in fname, because Orbiter installations can redirect these directories.

Be careful when opening a file for writing in the standard Orbiter subfolders: except for ROOT and
SCENARIOS, all other standard folders may be readonly (e.g. for CD installations)

See also:

oapiCloseFile

7.56.1.3

OAPIFUNC bool oapiReadItem_bool (FILEHANDLE f, char x item, bool & b)

Read the value of a tag from a configuration file.

Parameters:

f file handle

item tag defining the item

b boolean value

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 159

Returns:

true if tag was found in the file, false if not.

Note:

In a file boolean values are represented by the strings "FALSE" and "TRUE".

See also:

oapiReadltem_string for more details.

7.56.1.4 OAPIFUNC bool oapiReadltem_float (FILEHANDLE f, char x item, double & d)

Read the value of a tag from a configuration file.

Parameters:
f file handle
item tag defining the item
d double value

Returns:

true if tag was found in the file, false if not.

See also:

oapiReadlItem_string for more details.

7.56.1.5 OAPIFUNC bool oapiReadItem_int (FILEHANDLE f, char x* item, int & i)

Read the value of a tag from a configuration file.

Parameters:
f file handle
item tag defining the item
i integer value

Returns:

true if tag was found in the file, false if not.

See also:

oapiReadItem_string for more details.

7.56.1.6 OAPIFUNC bool oapiReadltem_string (FILEHANDLE f, char x item, char x string)

Read the value of a tag from a configuration file.

Parameters:

f file handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 160

item tag defining the item

string character-string value

Returns:

true if tag was found in the file, false if not.

Note:

The tag-value entries of a configuration file have the format <tag> = <value>

The functions search the complete file independent of the current position of the file pointer.
Whitespace around tag and value are discarded, as well as comments beginning with a semicolon (;)
to the end of the line.

String values can contain internal whitespace.

7.56.1.7 OAPIFUNC bool oapiReadltem_vec (FILEHANDLE f, char * item, VECTOR3 & vec)

Read the value of a tag from a configuration file.

Parameters:

f file handle
item tag defining the item

vec vector value

Returns:

true if tag was found in the file, false if not.

Note:

Vector values are represented by space-separated triplets of floating point values.

See also:

oapiReadltem_string for more details.

7.56.1.8 OAPIFUNC bool oapiReadScenario_nextline (FILEHANDLE scn, char «& line)

Reads an item from a scenario file.

Parameters:

scn file handle

line pointer to the scanned line

Note:

The function returns true as long as an item for the current block could be read. It returns false at EOF,
or when an "END" token is read.

Leading and trailing whitespace, and trailing comments (from ";" to EOL) are automatically removed.
"line" points to an internal static character buffer. The buffer grows automatically to hold lines of
arbitrary length.

The buffer is overwritten on the next call to oapiReadScenario_nextline, so it must be copied or pro-
cessed before the next call.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 161

Examples:

clbkLoadStateEx.cpp.

7.56.1.9 OAPIFUNC bool oapiSaveScenario (const char * fname, const char * desc)

Writes the current simulation state to a scenario file.

Parameters:
Jfname scenario file name
desc scenario description
Returns:

true if scenario could be written successfully, false if an error occurred.

Note:

The file name is always calculated relative from the default orbiter scenario folder (usually
Orbiter\Scenarios). The file name can contain a relative path starting from that directory, but the
subdirectories must already exist. The function will not create new directories. The file name should
not contain an absolute path.

The file name should not contain an extension. Orbiter will automatically add a .scn extension.

The description string can be empty ("").

7.56.1.10 OAPIFUNC void oapiWriteltem_bool (FILEHANDLE f, char * ifem, bool b)

Write a tag and its value to a configuration file.

Parameters:

f file handle
item pointer to tag string

b boolean value

Note:
In a file boolean values are represented by the strings "FALSE" and "TRUE".

See also:

oapiWriteItem_string for more details

7.56.1.11 OAPIFUNC void oapiWriteltem_float (FILEHANDLE f, char * item, double d)

Write a tag and its value to a configuration file.

Parameters:

f file handle
item pointer to tag string
d double value

See also:

oapiWriteItem_string for more details

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 162

7.56.1.12 OAPIFUNC void oapiWriteltem_int (FILEHANDLE f, char * item, int i)

Write a tag and its value to a configuration file.

Parameters:

f file handle
item pointer to tag string

i integer value

See also:

oapiWriteItem_string for more details

7.56.1.13 OAPIFUNC void oapiWriteltem_string (FILEHANDLE f, char * ifem, char * string)

Write a tag and its value to a configuration file.

Parameters:

f file handle
item pointer to tag string

string character-string value

Note:

Use these functions to write items (tags and values) to configuration files.
The format of the written items is recognised by the corresponding oapiReadItem_xxx functions.
For historic reasons, the format for scenario file entries is different. Use the oapiWriteLine function.

See also:

oapiReadltem_string

7.56.1.14 OAPIFUNC void oapiWriteltem_vec (FILEHANDLE f, char * item, const VECTOR3 &
vec)

Write a tag and its value to a configuration file.

Parameters:

f file handle
item pointer to tag string

vec vector value

Note:

Vector values are represented by space-separated triplets of floating point values.

See also:

oapiWriteltem_string for more details

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.56 File I0 Functions 163

7.56.1.15 OAPIFUNC void oapiWriteLine (FILEHANDLE file, char * line)
Writes a line to a file.

Parameters:

file file handle

line line to be written (zero-terminated)

7.56.1.16 OAPIFUNC void oapiWriteLog (char x line)

Writes a line to the Orbiter log file (orbiter.log) in the main orbiter directory.

Parameters:

line line to be written (zero-terminated)

Note:

This function is intended for diagnostic initialisation and error messages by plugin modules. The
messages should make it easier to track problems.

Avoid unnecessary output. In particular, don’t write to the log file continously from within the simula-
tion loop.

7.56.1.17 OAPIFUNC void oapiWriteScenario_float (FILEHANDLE scn, char x item, double d)

Writes a floating point-valued item to a scenario file.

Parameters:

scn file handle
item item id
d floating point value to be written

7.56.1.18 OAPIFUNC void oapiWriteScenario_int (FILEHANDLE scn, char x ifem, int i)

Writes an integer-valued item to a scenario file.

Parameters:

scn file handle
item item id

i integer value to be written

7.56.1.19 OAPIFUNC void oapiWriteScenario_string (FILEHANDLE scn, char * item, char *
string)

Writes a string-valued item to a scenario file.

Parameters:
scn file handle
item item id
string string to be written (zero-terminated)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.57 Utility functions 164

7.56.1.20 OAPIFUNC void oapiWriteScenario_vec (FILEHANDLE scn, char * item, const VEC-
TOR3 & vec)

Werites a vector-valued item to a scenario file.

Parameters:
scn file handle
item item id

vec vector to be written

7.57 Utility functions
Functions

* OAPIFUNC double oapiRand ()

Returns uniformly distributed pseudo-random number in the range [0..1].

* OAPIFUNC DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)

Returns a colour value adapted to the current screen colour depth for given red, green and blue components.

7.57.1 Function Documentation

7.57.1.1 OAPIFUNC DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)

Returns a colour value adapted to the current screen colour depth for given red, green and blue components.

Parameters:

red red component (0-255)
green green component (0-255)

blue blue component (0-255)

Returns:

colour value

Note:

Colour values are required for some surface functions like oapiClearSurface or oapiSetSurface-
ColourKey. The colour key for a given RGB triplet depends on the screen colour depth. This function
returns the colour value for the closest colour match which can be displayed in the current screen
mode.

In 24 and 32 bit modes the requested colour can always be matched. The colour value in that case is
(red << 16) + (green << 8) + blue.

For 16 bit displays the colour value is calculated as ((red*31)/255) << 11 + ((greenx63)/255 << 5 +
(bluex31)/255 assuming a "565" colour mode (5 bits for red, 6, for green, 5 for blue). This means that
a requested colour may not be perfectly matched.

These colour values should not be used for Windows (GDI) drawing functions where a COLORREF
value is expected.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.58 User input functions 165

7.57.1.2 OAPIFUNC double oapiRand ()

Returns uniformly distributed pseudo-random number in the range [0..1].

Returns:

Random value between 0 and 1.

Note:

This function uses the system call rand(), so the quality of the random sequence depends on the system
implementation. If you need high-quality random sequences you may need to implement your own
generator.

Orbiter seeds the generator with the system time on startup, so the generated sequences are not repro-
ducible.

7.58 User input functions

Functions

* OAPIFUNC void oapiOpenlnputBox (char xtitle, bool(xClbk)(void *, char *, void %), char xbuf=0,
int vislen=20, void *usrdata=0)

Opens a modal input box requesting a string from the user.

¢ OAPIFUNC void oapiOpenInputBoxEx (const char xtitle, bool(xClbk_enter)(void *, char *, void
x), bool(*Clbk_cancel)(void *, char *, void *), char xbuf=0, int vislen=20, void xusrdata=0,
DWORD flags=0)

7.58.1 Function Documentation

7.58.1.1 OAPIFUNC void oapiOpenInputBox (char x fitle, bool(x)(void *, char %, void x) Clbk, char
* buf = 0, int vislen = 20, void * usrdata = 0)

Opens a modal input box requesting a string from the user.

Parameters:

title input box title

CIbk callback function receiving the result of the user input (see notes)
buf initial state of the input string

vislen number of characters visible in input box

usrdata user-defined data passed to the callback function

Note:

Format for callback function:

bool InputCallback (void =xid, char =*str, void *usrdata)

where id identifies the input box, str contains the user-supplied string, and usrdata contains the data
specified in the call to oapiOpenlnputBox. The callback function should return true if it accepts the
string, false otherwise (the box will not be closed if the callback function returns false).

The box can be closed by the user by pressing Enter ("OK") or Esc ("Cancel"). The callback function
is only called in the first case.

The input box is modal, i.e. all keyboard input is redirected into the dialog box. Normal key functions
resume after the box is closed.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.59 Onscreen annotations 166

See also:

oapiOpenInputBoxEx

7.59 Onscreen annotations
7.59.1 Detailed Description

These functions can be used to display text on top of the render window during a running simulation.
These may include flight parameters of the currently observed spacecraft, user instructions for tutorials, or
debugging information during development.

Functions

* OAPIFUNC NOTEHANDLE oapiCreate Annotation (bool exclusive, double size, const VECTOR3
&col)

Creates an annotation handle for displaying onscreen text during a simulation.

OAPIFUNC bool oapiDelAnnotation (NOTEHANDLE hNote)

Deletes an annotation handle.

OAPIFUNC void oapiAnnotationSetPos (NOTEHANDLE hNote, double x1, double y1, double x2,
double y2)

Resets the bounding box of the annotation display area.

OAPIFUNC void oapiAnnotationSetSize (NOTEHANDLE hNote, double size)

Resets the font size of the annotation text.

OAPIFUNC void oapiAnnotationSetColour (NOTEHANDLE hNote, const VECTOR3 &col)

Resets the font colour of the annotation text.

OAPIFUNC void oapiAnnotationSetText NOTEHANDLE hNote, char xnote)

Writes a new annotation to screen, or overwrites the previous text.

7.59.2 Function Documentation

7.59.2.1 OAPIFUNC void oapiAnnotationSetColour (NOTEHANDLE hNote, const VECTOR3 &
col)

Resets the font colour of the annotation text.

Parameters:

hNote annotation handle

col font colour (RGB triplet with ranges 0-1)

See also:

oapiCreate Annotation

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.59 Onscreen annotations 167

7.59.2.2 OAPIFUNC void oapiAnnotationSetPos (NOTEHANDLE hNote, double xI, double yl,
double x2, double y2)

Resets the bounding box of the annotation display area.

Parameters:

hNote annotation handle

x1 left edge of bounding box (0 <=x1 < x2)

y1 top edge of bounding box (0 <=yl < y2)

x2 right edge of bounding box (x1 < x2 <=1)
y2 bottom edge of bounding box (yl < y2 <=1)

Note:

boundary values are specified in units of the render window area, with (0,0) being the top left corner,
and (1,1) the bottom right corner.
If the bounding box is set too small, part of the annotation may not be visible.

See also:

oapiCreate Annotation

7.59.2.3 OAPIFUNC void oapiAnnotationSetSize (NOTEHANDLE hNote, double size)

Resets the font size of the annotation text.

Parameters:

hNote annotation handle

size font size in relative units (> 0)

Note:

Annotations are sized in relation to the simulation window size. Size 1 is the default annotation size.

See also:

oapiCreateAnnotation

7.59.2.4 OAPIFUNC void oapiAnnotationSetText (NOTEHANDLE hNote, char * note)

Writes a new annotation to screen, or overwrites the previous text.

Parameters:

hNote annotation handle

note annotation text

See also:

oapiCreate Annotation

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.60 Obsolete functions 168

7.59.2.5 OAPIFUNC NOTEHANDLE oapiCreateAnnotation (bool exclusive, double size, const
VECTORS3 & col)

Creates an annotation handle for displaying onscreen text during a simulation.

Parameters:

exclusive exclusive mode flag
size text scaling factor (>0, 1=standard)

col text colour (RGB triplet, range 0-1 for each component)

Returns:

Annotation handle

See also:

oapiDelAnnotation, oapiAnnotationSetPos, oapiAnnotationSetSize, oapiAnnotationSetColour, oapi-
AnnotationSetText

7.59.2.6 OAPIFUNC bool oapiDelAnnotation NOTEHANDLE hNote)

Deletes an annotation handle.

Parameters:

hNote annotation handle

Returns:

true on success, false if an annotation corresponding to hNote was not found.

See also:

oapiCreateAnnotation

7.60 Obsolete functions

Functions

* OAPIFUNC OBJHANDLE oapiGetStationByName (char «name)

* OAPIFUNC OBJHANDLE oapiGetStationByIndex (int index)

* OAPIFUNC void oapiGetAtmPressureDensity (OBJHANDLE hVessel, double xpressure, double
xdensity)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current vessel posi-
tion.

¢ OAPIFUNC void oapiGetFocusAtmPressureDensity (double s«pressure, double *density)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current focus vessel’s
position.

* OAPIFUNC DWORD oapiGetStationCount ()
* OAPIFUNC bool oapiAcceptDelayedKey (char key, double interval)
* OAPIFUNC int oapiRegisterMFDMode (MFDMODESPEC &spec)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.60 Obsolete functions 169

Register a custom MFD mode.

* OAPIFUNC int oapiGetMFDModeSpec (char xname, MFDMODESPEC #xspec=0)
Returns the mode identifier and spec for an MFD mode defined by its name.

7.60.1 Function Documentation

7.60.1.1 OAPIFUNC void oapiGetAtmPressureDensity (OBJHANDLE #hVessel, double * pressure,
double * density)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current vessel posi-
tion.

Deprecated

This function has been replaced by oapiGetAtm.

Parameters:

hVessel vessel handle

pressure pointer to variable receiving pressure value [Pa]

density pointer to variable receiving density value [kg/m3]

Note:

Pressure and density are calculated using an exponential barometric equation, without accounting for
local variations.

See also:

oapiGetAtm

7.60.1.2 OAPIFUNC void oapiGetFocusAtmPressureDensity (double * pressure, double x density)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current focus vessel’s
position.

Deprecated

This function has been replaced by oapiGetAtm.

Parameters:

pressure pointer to variable receiving pressure value [Pa]

density pointer to variable receiving density value [kg/m3]

Note:

Pressure and density are calculated using an exponential barometric equation, without accounting for
local variations.

See also:

oapiGetAtm

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61 Keyboard key identifiers 170

7.60.1.3 OAPIFUNC int oapiGetMFDModeSpec (char x name, MFDMODESPEC xx spec = 0)

Returns the mode identifier and spec for an MFD mode defined by its name.

Deprecated

This function has been replaced by oapiGetMFDModeSpecEx

See also:

oapiGetMFDModeSpecEx

7.60.1.4 OAPIFUNC OBJHANDLE oapiGetStationByIndex (int index)

Deprecated

Stations are no longer distinguished from vessels. This function does not perform any action other
than writing a warning to the log file. Use oapiGetVesselByIndex instead.

7.60.1.5 OAPIFUNC OBJHANDLE oapiGetStationByName (char * name)

Deprecated

Stations are no longer distinguished from vessels. This function does not perform any action other
than writing a warning to the log file. Use oapiGetVesselByName instead.

7.60.1.6 OAPIFUNC int oapiRegisterMFDMode (MFDMODESPEC & spec)

Register a custom MFD mode.

Deprecated
This function has been replaced by oapiRegisterMFDMode(MFDMODESPECEX &).

See also:

oapiRegisterMFDMode(MFDMODESPECEX &)

7.61 Keyboard key identifiers

Defines

 #define OAPI_KEY_ESCAPE 0x01
Escape key.

* #define OAPI_KEY_1 0x02

"1’ key on main keyboard

* #define OAPI_KEY_2 0x03

'2’ key on main keyboard

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61 Keyboard key identifiers

171

e #define OAPI_KEY_3 0x04

'3’ key on main keyboard

e #define OAPI_KEY_4 0x05

4’ key on main keyboard

¢ #define OAPI_KEY_5 0x06

’5’ key on main keyboard

* #define OAPI_KEY_6 0x07

'6’ key on main keyboard

* #define OAPI_KEY_7 0x08

'7’ key on main keyboard

* #define OAPI_KEY_8 0x09

'8’ key on main keyboard

* #define OAPI_KEY_9 0x0A

'9’ key on main keyboard

e #define OAPI_KEY_0 0xOB

'0’ key on main keyboard

* #define OAPI_KEY_MINUS 0x0C

- key on main keyboard

* #define OAPI_KEY_EQUALS 0x0D

'=" key on main keyboard

¢ #define OAPI_KEY_BACK 0x0E
backspace key

e #define OAPI_KEY_TAB 0xOF
tab key

¢ #define OAPI_KEY_Q 0x10
'Q’ key

e #define OAPI_KEY_W 0x11
"W’ key

¢ #define OAPI_KEY_E 0x12
'E” key

e #define OAPI_KEY_R 0x13

'R’ key

e #define OAPI_KEY_T Ox14
T’ key

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61

Keyboard key identifiers

172

#define OAPI_KEY_Y 0x15
'Y’ key

#define OAPI_KEY_U 0x16
U’ key
#define OAPI_KEY_I 0x17
I’ key
#define OAPI_KEY_O 0x18
'O’ key
#define OAPI_KEY_P 0x19
P’ key
#define OAPI_KEY_LBRACKET 0x1A

[(left bracket) key

#define OAPI_KEY_RBRACKET 0x1B
']’ (right bracket) key

#define OAPI_KEY_RETURN 0x1C

"Enter’ key on main keyboard

#define OAPI_KEY_LCONTROL 0x1D
Left "Ctrl’ key.

#define OAPI_KEY_A Ox1E
A’ key

#define OAPI_KEY_S O0x1F
'S’ key

#define OAPI_KEY_D 0x20
‘D’ key

#define OAPI_KEY_F 0x21
'F’ key

#define OAPI_KEY_G 0x22
‘G’ key

#define OAPI_KEY_H 0x23
"H’ key

#define OAPI_KEY_J 0x24
'J key

#define OAPI_KEY_K 0x25

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61 Keyboard key identifiers

173

'K’ key
* #define OAPI_KEY_L 0x26
'L’ key
o #define OAPI_KEY_SEMICOLON 0x27

;7 (semicolon) key

* #define OAPI_KEY_APOSTROPHE 0x28
" (apostrophe) key

* #define OAPI_KEY_GRAVE 0x29

accent grave

e #define OAPI_KEY_LSHIFT 0x2A
Left "Shift’ key.

e #define OAPI_KEY_BACKSLASH 0x2B
"\’ (Backslash) key

e #define OAPI_KEY_Z 0x2C
"7’ key

 #define OAPI_KEY_X 0x2D
‘X’ key

¢ #define OAPI_KEY_C 0x2E
C’ key

e #define OAPI_KEY_V 0x2F
'V’ key

e #define OAPI_KEY_B 0x30
‘B’ key

¢ #define OAPI_KEY_N 0x31
"N’ key

¢ #define OAPI_KEY_M 0x32
‘M’ key

e #define OAPI_KEY_COMMA 0x33

" (comma) key

* #define OAPI_KEY_PERIOD 0x34

" key on main keyboard

o #define OAPI_KEY_SLASH 0x35

'/’ key on main keyboard

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61 Keyboard key identifiers 174

¢ #define OAPI_KEY_RSHIFT 0x36
Right "Shift’ key.

* #define OAPI_KEY_MULTIPLY 0x37

* on numeric keypad

« #define OAPI_KEY_LALT 0x38
left Alt

* #define OAPI_KEY_SPACE 0x39
"Space’ key

¢ #define OAPI_KEY_CAPITAL 0x3A
caps lock key

* #define OAPI_KEY_F1 0x3B
F1 function key.

* #define OAPI_KEY_F2 0x3C
F?2 function key.

* #define OAPI_KEY_F3 0x3D
F3 function key.

* #define OAPI_KEY_F4 0x3E
F4 function key.

e #define OAPI_KEY_F5 0x3F
F5 function key.

¢ #define OAPI_KEY_F6 0x40
F6 function key.

¢ #define OAPI_KEY_F7 0x41
F7 function key.

* #define OAPI_KEY_F8 0x42
F8 function key.

* #define OAPI_KEY_F9 0x43
F9 function key.

* #define OAPI_KEY_F10 0x44
F10 function key.

¢ #define OAPI_KEY_NUMLOCK 0x45
"Num Lock’ key

o #define OAPI_KEY_SCROLL 0x46
Scroll lock.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.61

Keyboard key identifiers

175

#define OAPI_KEY_NUMPAD7 0x47

'7’ key on numeric keypad

#define OAPI_KEY_NUMPADS 0x48

'8’ key on numeric keypad

#define OAPI_KEY_NUMPAD9 0x49

'9’ key on numeric keypad

#define OAPI_KEY_SUBTRACT 0x4A

- key on numeric keypad

#define OAPI_KEY_NUMPAD4 0x4B

4’ key on numeric keypad

#define OAPI_KEY_NUMPADS 0x4C

’5’ key on numeric keypad

#define OAPI_KEY_NUMPADG6 0x4D

’6° key on numeric keypad

#define OAPI_KEY_ADD 0x4E

'+’ key on numeric keypad

#define OAPI_KEY_NUMPADI 0x4F

'1’ key on numeric keypad

#define OAPI_KEY_NUMPAD2 0x50

’2’ key on numeric keypad

#define OAPI_KEY_NUMPAD3 0x51

'3’ key on numeric keypad

#define OAPI_KEY_NUMPADO 0x52

'0’ key on numeric keypad

#define OAPI_KEY_DECIMAL 0x53

" key on numeric keypad

#define OAPI_KEY_OEM_102 0x56
| < > on UK/German keyboards

#define OAPI_KEY_F11 0x57
F11 function key.

#define OAPI_KEY_F12 0x58
F12 function key.

#define OAPI_KEY_NUMPADENTER 0x9C

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62

Logical key ids

176

Enter on numeric keypad.

#define OAPI_KEY_RCONTROL 0x9D
right Control key

#define OAPI_KEY_DIVIDE 0xB5

'/’ key on numeric keypad

#define OAPI_KEY_RALT 0xBS8
right Alt

#define OAPI_KEY_HOME 0xC7

Home on cursor keypad.

#define OAPI_KEY_UP 0xC8

up-arrow on cursor keypad

#define OAPI_KEY_PRIOR 0xC9
PgUp on cursor keypad.

#define OAPI_KEY_LEFT 0xCB

left-arrow on cursor keypad

#define OAPI_KEY_RIGHT 0xCD

right-arrow on cursor keypad

#define OAPI_KEY_END O0xCF
End on cursor keypad.

#define OAPI_KEY_DOWN 0xD0O

down-arrow on cursor keypad

#define OAPI_KEY_NEXT 0xD1
PgDn on cursor keypad.

#define OAPI_KEY_INSERT 0xD2

Insert on cursor keypad.

#define OAPI_KEY_DELETE 0xD3

Delete on cursor keypad.

7.62 Logical key ids

Defines

#define OAPI_LKEY_CockpitRotateLeft 0

rotate camera left in cockpit view

#define OAPI_LKEY_CockpitRotateRight 1

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62

Logical key ids

177

rotate camera right in cockpit view

#define OAPI_LKEY_CockpitRotateUp 2

rotate camera up in cockpit view

#define OAPI_LKEY_CockpitRotateDown 3

rotate camera down in cockpit view

#define OAPI_LKEY_CockpitDontLean 4

return to default cockpit camera position

#define OAPI_LKEY_CockpitLeanForward 5

move cockpit camera forward

#define OAPI_LKEY_CockpitLeanLeft 6

move cockpit camera left

#define OAPI_LKEY_CockpitLeanRight 7

move cockpit camera right

#define OAPI_LKEY_CockpitResetCam 8

rotate and shift cockpit camera back to default

#define OAPI_LKEY_PanelShiftLeft 9
shift 2D instrument panel left

#define OAPI_LKEY_PanelShiftRight 10
shift 2D instrument panel right

#define OAPI_LKEY_PanelShiftUp 11
shift 2D instrument panel up

#define OAPI_LKEY_PanelShiftDown 12

shift 2D instrument panel down

#define OAPI_LKEY_PanelSwitchLeft 13

switch to left neighbour panel

#define OAPI_LKEY_PanelSwitchRight 14

switch to right neighbour panel

#define OAPI_LKEY_PanelSwitchUp 15

switch to upper neighbour panel

#define OAPI_LKEY_PanelSwitchDown 16

switch to lower neighbour panel

#define OAPI_LKEY_TrackRotateLeft 17

turn track view camera left

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62

Logical key ids

178

#define OAPI_LKEY_TrackRotateRight 18

turn track view camera right

#define OAPI_LKEY_TrackRotateUp 19

turn track view camera up

#define OAPI_LKEY_TrackRotateDown 20

turn track view camera down

#define OAPI_LKEY_TrackAdvance 21

advance track view camera towards target

#define OAPI_LKEY_TrackRetreat 22

retreat track view camera from target

#define OAPI_LKEY_GroundTiltLeft 23

tilt camera left in ground view

#define OAPI_LKEY_GroundTiltRight 24

tilt camera right in ground view

#define OAPI_LKEY_GroundTiltUp 25

tilt camera up in ground view

#define OAPI_LKEY_GroundTiltDown 26

tilt camera down in ground view

#define OAPI_LKEY_IncMainThrust 27

increment thrust of main thrusters

#define OAPI_LKEY_DecMainThrust 28

decrement thrust of main thrusters

#define OAPI_LKEY_KillMainRetro 29

kill main and retro thrusters

#define OAPI_LKEY_FullMainThrust 30

temporary full main thrust

#define OAPI_LKEY_FullRetroThrust 31

temporary full retro thrust

#define OAPI_LKEY_IncHoverThrust 32

increment thrust of hover thrusters

#define OAPI_LKEY_DecHoverThrust 33

decrement thrust of hover thrusters

#define OAPI_LKEY_RCSEnable 34

enable/disable RCS (reaction control system)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62

Logical key ids

179

#define OAPI_LKEY_RCSMode 35
toggle linear/rotational RCS mode

#define OAPI_LKEY_RCSPitchUp 36
rotational RCS: pitch up

#define OAPI_LKEY_RCSPitchDown 37
rotational RCS: pitch down

#define OAPI_LKEY_RCSYawLeft 38
rotational RCS: yaw left

#define OAPI_LKEY_RCSYawRight 39
rotational RCS: yaw right

#define OAPI_LKEY_RCSBankLeft 40
rotational RCS: bank left

#define OAPI_LKEY_RCSBankRight 41
rotational RCS: bank right

#define OAPI_LKEY_RCSUp 42

linear RCS: accelerate up (+y)

#define OAPI_LKEY_RCSDown 43

linear RCS: accelerate down (-y)

#define OAPI_LKEY_RCSLeft 44

linear RCS: accelerate left (-x)

#define OAPI_LKEY_RCSRight 45

linear RCS: accelerate right (+x)

#define OAPI_LKEY_RCSForward 46

linear RCS: accelerate forward (+z)

#define OAPI_LKEY_RCSBack 47

linear RCS: accelerate backward (-z)

#define OAPI_LKEY_LPRCSPitchUp 48
rotational RCS: pitch up 10%

#define OAPI_LKEY_LPRCSPitchDown 49
rotational RCS: pitch down 10%

#define OAPI_LKEY_LPRCSYawLeft 50
rotational RCS: yaw left 10%

#define OAPI_LKEY_LPRCSYawRight 51

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62 Logical key ids 180

rotational RCS: yaw right 10%

o #define OAPI_LKEY_LPRCSBankLeft 52
rotational RCS: bank left 10%

* #define OAPI_LKEY_LPRCSBankRight 53
rotational RCS: bank right 10%

* #define OAPI_LKEY_LPRCSUp 54
linear RCS: accelerate up 10% (+y)

e #define OAPI_LKEY_LPRCSDown 55
linear RCS: accelerate down 10% (-y)

e #define OAPI_LKEY_LPRCSLeft 56
linear RCS: accelerate left 10% (-x)

e #define OAPI_LKEY_LPRCSRight 57
linear RCS: accelerate right 10% (+x)

o #define OAPI_LKEY_LPRCSForward 58

linear RCS: accelerate forward 10% (+z)

e #define OAPI_LKEY_LPRCSBack 59
linear RCS: accelerate backward 10% (-z)

* #define OAPI_LKEY_NMHoldAltitude 60

toggle navmode: hold altitude

¢ #define OAPI_LKEY_ NMHLevel 61

toggle navmode: level with horizon

¢ #define OAPI_LKEY_NMPrograde 62

toggle navmode: prograde

* #define OAPI_LKEY_NMRetrograde 63

toggle navmode: retrograde

e #define OAPI_LKEY_NMNormal 64

toggle navmode: normal to orbital plane

¢ #define OAPI_LKEY_NMAntinormal 65

toggle navmode: antinormal to orbital plane

e #define OAPI_LKEY_NMKillrot 66

toggle navmode: kill rotation

e #define OAPI_LKEY_Undock 67

undock from docked vessel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62 Logical key ids 181

¢ #define OAPI_LKEY_IncElevatorTrim 68

increment elevator trim setting

e #define OAPI_LKEY_DecElevatorTrim 69

decrement elevator trim setting

e #define OAPI_LKEY_WheelbrakeLeft 70
apply wheelbrake left

* #define OAPI_LKEY_WheelbrakeRight 71
apply wheelbrake right

e #define OAPI_LKEY_HUD 72
toggle HUD on/off

¢ #define OAPI_LKEY_HUDMode 73
switch through HUD modes

¢ #define OAPI_LKEY_HUDReference 74
query reference object for HUD display

* #define OAPI_LKEY_HUDTarget 75
query target object for HUD display

e #define OAPI_LKEY_HUDColour 76
switch through HUD colours

o #define OAPI_LKEY_IncSimSpeed 77

increase simulation speed x10

¢ #define OAPI_LKEY_DecSimSpeed 78

decrease simulation speed x0.1

* #define OAPI_LKEY_IncFOV 79

increment field of view

* #define OAPI_LKEY_DecFOV 80

decrement field of view

* #define OAPI_LKEY_StepIncFOV 81
increment field of view by 10 deg

¢ #define OAPI_LKEY_StepDecFOV 82
decrement field of view by 10 deg

e #define OAPI_LKEY_MainMenu 83

open main menu

* #define OAPI_LKEY_DIgHelp 84
open help dialog

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.62

Logical key ids

182

#define OAPI_LKEY_DIgCamera 85

open camera dialog

#define OAPI_LKEY_DIgSimspeed 86

open simulation speed dialog

#define OAPI_LKEY_DIgCustomCmd 87

open custom command dialog

#define OAPI_LKEY_DIgVisHelper 88

open visual helper dialog

#define OAPI_LKEY_DIgRecorder 89
open flight recorder dialog

#define OAPI_LKEY_DlgInfo 90
open object info dialog

#define OAPI_LKEY_DIgMap 91

open map dialog

#define OAPI_LKEY_DIgNavaid 92

open nav transmitter list

#define OAPI_LKEY_ToggleInfo 93
toggle on-screen info block on/off

#define OAPI_LKEY_ToggleFPS 94
toggle frame rate display on/off

#define OAPI_LKEY_ToggleCamlInternal 95

switch between cockpit and external camera

#define OAPI_LKEY_ToggleTrackMode 96

switch between track camera modes

#define OAPI_LKEY_TogglePanelMode 97

switch between cockpit modes

#define OAPI_LKEY_TogglePlanetarium 98
toggle celestial marker display on/off

#define OAPI_LKEY_ToggleRecPlay 99
toggle flight recorder/playback on/off

#define OAPI_LKEY_Pause 100

toggle simulation pause on/off

#define OAPI_LKEY_Quicksave 101

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.63 Top-level module callback functions 183

quick-save current simulation state

#define OAPI_LKEY_Quit 102

quit simulation session

#define OAPI_LKEY_DIgSelectVessel 103

open vessel selection dialog

o #define OAPI_LKEY_SelectPrevVessel 104

switch focus to previous vessel

e #define LKEY_COUNT 105

number of logical key definitions

7.63 Top-level module callback functions
7.63.1 Detailed Description

This section contains a list of global nonmember callback functions that can be defined by an addon module.
Orbiter will call these functions when specific events occur, e.g. a module is activated or deactivated, a
simulation session is opened or closed, etc.

Modules

¢ General module callback functions
¢ Vessel module callback functions
* Plugin module callback functions

7.64 General module callback functions
7.64.1 Detailed Description
Module initialisation and exit notifications. The two callback functions in this group are called by Orbiter

when the module is loaded or unloaded, respecively. It is used for all module types (plugin and vessel
modules).

Functions

¢ DLLCLBK void InitModule (HINSTANCE hModule)

Module initialisation callback function.

* DLLCLBK void ExitModule (HINSTANCE hModule)

Module exit notification callback function.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.65 Vessel module callback functions 184

7.64.2 Function Documentation

7.64.2.1 DLLCLBK void ExitModule (HINSTANCE hModule)

Module exit notification callback function.

Parameters:

hModule module handle

Note:

This function is called by Orbiter when a module is deactivated.

For plugin modules, ExitModule is called at program shutdown for all active modules, or whenever a
user deactivates a module in the Modules tab of the Orbiter launchpad.

For vessel modules, ExitModule is called when a simulation session is closed for any vessel types
active at that time, or during a session when the last vessel of this type is destroyed.

7.64.2.2 DLLCLBK void InitModule (HINSTANCE hModule)

Module initialisation callback function.

Parameters:

hModule module handle

Note:

This function is called by Orbiter when a module becomes active.

For plugin modules, InitModule is called at program start for all modules in the active module list of
orbiter.def, or whenever a user activates a module in the Modules tab of the Orbiter launchpad.

For vessel modules, InitModule is called whenever the first vessel of the corresponding type is created
(usually at the start of a simulation session, or during a simulation if the first vessel instance is created
dynamically).

hModule is the module handle that identifies the addon DLL being initialised. It can be stored and
used later, e.g. for loading resources from the module. To get the handle of the Orbiter core module,
use oapiGetOrbiterInstance.

7.65 Vessel module callback functions
7.65.1 Detailed Description

This section contains a list of nonmember callback functions for vessel modules. Apart from the general
module initialisation and exit functions in Top-level module callback functions, the only vessel-specific
top-level callback functions are notifications for vessel creation and deletion. During the vessel creation
callback, the module should create an instance of a class derived from VESSEL2 or VESSEL3, and delete
the instance during the vessel deletion callback. All other events should be handled by overloading the
appropriate VESSEL?2 and VESSEL3 member callback functions.

Functions

* DLLCLBK VESSEL x* ovclnit (OBJHANDLE hvessel, int flightmodel)

Vessel instance creation notification.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.65 Vessel module callback functions 185

¢ DLLCLBK void ovcExit (VESSEL xvessel)

Vessel deletion notification.

7.65.2 Function Documentation

7.65.2.1 DLLCLBK void ovcExit (VESSEL x* vessel)

Vessel deletion notification.

Parameters:

vessel pointer to vessel instance

Note:

This function is called by Orbiter whenever a vessel of the type defined by the module is about to be
destroyed at the end or during a simulation session.

The pointer passed to the function is the same as the one returned by ovclnit for the corresponding
vessel.

Typically, the implementation of this function should cast the pointer to a pointer to the derived vessel
class, and delete the object.

Examples:

VESSEL2.cpp.

7.65.2.2 DLLCLBK VESSEL:x ovcInit (OBJHANDLE hvessel, int flightmodel)

Vessel instance creation notification.

Parameters:

hvessel vessel handle

flightmodel flight model selection identifier

Returns:

The function should return a pointer to the derived VESSEL instance it created.

Note:

This function is called by Orbiter whenever a vessel of the type defined by the module is created at the
beginning or during a simulation session.

The implementation should create an instance of a vessel class derived from VESSEL, VESSEL?2 or
VESSEL3 and return a pointer to it.

hvessel is a handle that identifies the vessel instance in Orbiter.

flightmodel identifies the realism level of the requested flight model. This value may be O (simple) or
1 (complex). Vessel implementation that support different flight models for easy/realistic setups can
use this value to define the appropriate model.

Examples:

VESSEL2.cpp.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.66 Plugin module callback functions 186

7.66 Plugin module callback functions
7.66.1 Detailed Description

The callback functions in this group are specific for plugin modules, i.e. modules that can be activated or
deactivated in the Modules tab of the Orbiter Launchpad. They can not be used in vessel modules.

Note that most of the top-level plugin callback functions (opcXXX) are now obsolete and should no longer
be used. Addon modules should instead create an instance of a class derived from the oapi::Module class
during InitModule, and overload the appropriate class-level callback functions.

Functions

* DLLCLBK void opcOpenRenderViewport (HWND hRenderWnd, DWORD width, DWORD height,
BOOL fullscreen)

Called by Orbiter when a graphics-enabled simulation session is started.

* DLLCLBK void opcCloseRenderViewport ()

Called by Orbiter when a graphics-enabled simulation session is closed.

* DLLCLBK void opcPreStep (double simt, double simdt, double mjd)

Time step notification before state update.

* DLLCLBK void opcPostStep (double simt, double simdt, double mjd)

Time step notification after state update.

¢ DLLCLBK void opcFocusChanged (OBJHANDLE hGainsFocus, OBJHANDLE hLosesFocus)

Change of input focus notification.

¢ DLLCLBK void opcTimeAccChanged (double new_warp, double old_warp)

Change of time acceleration notification.

* DLLCLBK void opcPause (bool pause)

Simulation pause/resume notification.

* DLLCLBK void opcDeleteVessel (OBJHANDLE hVessel)

Vessel destruction notification.

7.66.2 Function Documentation

7.66.2.1 DLLCLBK void opcCloseRenderViewport ()

Called by Orbiter when a graphics-enabled simulation session is closed.

Deprecated

This function has been replaced by oapi::Module::clbkSimulationEnd.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.66 Plugin module callback functions 187

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkSimulationEnd
method, and register it with oapiRegisterModule.

opcCloseRenderViewport is called by Orbiter only if no instance of oapi::Module is cre-
ated and registered during InitModule, or if a registered module does not overload the
oapi::Module::clbkSimulationEnd method.

7.66.2.2 DLLCLBK void opcDeleteVessel (OBJHANDLE #hVessel)
Vessel destruction notification.

Sent to modules immediately before a vessel is destroyed. After this callback method returns, the object
handle (hVessel) and will no longer be valid. Modules should make sure that they don’t access the vessel
in any form after this point.

Deprecated

This function has been replaced by oapi::Module::clbkDelete Vessel.

Parameters:

hVessel object handle for the vessel being destroyed.

Note:

Plugins should no longer implement this function. Instead they should create an instance of a
class derived from oapi::Module during InitModule that overloads the oapi::Module::clbkDelete Vessel
method, and register it with oapiRegisterModule.

opcDeleteVessel is called by Orbiter only if no instance of oapi::Module is created and registered
during InitModule, or if a registered module does not overload the oapi::Module::clbkDelete Vessel
method.

7.66.2.3 DLLCLBK void opcFocusChanged (OBJHANDLE hGainsFocus, OBJHANDLE hLoses-
Focus)

Change of input focus notification.
Called when input focus (keyboard and joystick control) is switched to a new vessel (for example as a result

of a call to oapiSetFocus).

Deprecated

This function has been replaced by oapi::Module::clbkFocusChanged.

Parameters:

hGainsFocus handle of vessel receiving the input focus

hLosesFocus handle of vessel losing focus

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkFocusChanged
method, and register it with oapiRegisterModule.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.66 Plugin module callback functions 188

opcFocusChanged is called by Orbiter only if no instance of oapi::Module is created and registered
during InitModule, or if a registered module does not overload the oapi::Module::clbkFocusChanged
method.

7.66.2.4 DLLCLBK void opcOpenRenderViewport (HWND #hRenderWnd, DWORD width,
DWORD height, BOOL fullscreen)

Called by Orbiter when a graphics-enabled simulation session is started.

Deprecated

This function has been replaced by oapi::Module::clbkSimulationStart.

Parameters:
hRenderWnd render window handle
width viewport width [pixel]
height viewport height [pixel]

Jfullscreen flag for fullscreen mode

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkSimulationStart
method, and register it with oapiRegisterModule.

opcOpenRenderViewport is called by Orbiter only if no instance of oapi::Module is cre-
ated and registered during InitModule, or if a registered module does not overload the
oapi::Module::clbkSimulationStart method.

7.66.2.5 DLLCLBK void opcPause (bool pause)
Simulation pause/resume notification.

Called when the pause/resume state of the simulation has changed.

Deprecated

This function has been replaced by oapi::Module::clbkPause.

Parameters:

pause pause/resume state: true if simulation has been paused, false if simulation has been resumed.

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::-Module::clbkPause method, and
register it with oapiRegisterModule.

opcPause is called by Orbiter only if no instance of oapi::Module is created and registered during
InitModule, or if a registered module does not overload the oapi::Module::clbkPause method.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

7.66 Plugin module callback functions 189

7.66.2.6 DLLCLBK void opcPostStep (double simt, double simdt, double mjd)
Time step notification after state update.

Called at each time step of the simulation, after the state has been updated to the current simulation time.

Deprecated

This function has been replaced by oapi::Module::clbkPostStep.

Parameters:

simt current simulation time [s]
simdt length of the last time step [s]

mjd simulation time in Modified Julian Date format [days]

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkPostStep method,
and register it with oapiRegisterModule.

opcPostStep is called by Orbiter only if no instance of oapi::Module is created and registered during
InitModule, or if a registered module does not overload the oapi::Module::clbkPostStep method.

7.66.2.7 DLLCLBK void opcPreStep (double simt, double simdt, double mjd)
Time step notification before state update.

Called at each time step of the simulation, before the state is updated to the current simulation time. This
function is only called when the "physical" state of the simulation is propagated in time. opcPreStep is not
called while the simulation is paused, even if the user moves the camera.

Deprecated
This function has been replaced by oapi::Module::clbkPreStep.

Parameters:

simt simulation time after the currently processed step [s]
simdt length of the currently processed step [s]

mjd simulation time afte the currently processed step in Modified Julian Date format [days]

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkPreStep method,
and register it with oapiRegisterModule.

opcPreStep is called by Orbiter only if no instance of oapi::Module is created and registered during
InitModule, or if a registered module does not overload the oapi::Module::clbkPreStep method.

7.66.2.8 DLLCLBK void opcTimeAccChanged (double new_warp, double old_warp)
Change of time acceleration notification.

Called when the simulation time acceleration factor changes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8 Orbiter API Class Documentation 190

Deprecated

This function has been replaced by oapi::Module::clbkTimeAccChanged.

Parameters:

new_warp new time acceleration factor

old_warp old time acceleration factor

Note:

Plugins should no longer implement this function. Instead they should create an instance of a class
derived from oapi::Module during InitModule that overloads the oapi::Module::clbkTimeAccChanged
method, and register it with oapiRegisterModule.

opcTimeAccChanged is called by Orbiter only if no instance of oapi::Module is cre-
ated and registered during InitModule, or if a registered module does not overload the
oapi::Module::clbkTimeAccChanged method.

8 Orbiter API Class Documentation

8.1 ANIMATION Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for ANIMATION:

8.1.1 Detailed Description

Animation definition.

Defines a complete animation, including a list of components, the current animation state, and the default
state (as represented by the original mesh).

Public Attributes

double defstate

default animation state in the mesh

¢ double state

current state

e UINT ncomp

number of components

ANIMATIONCOMP s#x comp

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.2 ANIMATIONCOMP Struct Reference

191

list of components

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPI.h

8.2 ANIMATIONCOMP Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for ANIMATIONCOMP:

8.2.1 Detailed Description

Animation component definition.

Defines one component of an animation, including the mesh transformation, the relative start and end points

within the entire animation, and any parent and child relationships with other animations.

See also:

VESSEL::Add AnimationComponent

Public Attributes

¢ double stateQ

first end state

¢ double statel

second end state

MGROUP_TRANSFORM x* trans

transformation

ANIMATIONCOMP x parent

parent transformation

ANIMATIONCOMP sx children
list of children

UINT nchildren

number of children

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.3 ATMCONST Struct Reference

192

8.3 ATMCONST Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for ATMCONST:

8.3.1 Detailed Description

Planetary atmospheric constants structure.

Public Attributes

* double p0

pressure at mean radius (’sea level’) [Pa]

¢ double rho0

density at mean radius

* double R
specific gas constant [J/(K kg)]

* double gamma

ratio of specific heats, c_p/c_v

e double C

exponent for pressure equation (temporary)

* double O2pp

partial pressure of oxygen

¢ double altlimit

atmosphere altitude limit [m]

¢ double radlimit

radius limit (altlimit + mean radius)

¢ double horizonalt

horizon rendering altitude

e VECTOR3 colorQ

sky colour at sea level during daytime

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.4 ATMOSPHERE Class Reference

193

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.4 ATMOSPHERE Class Reference

#include <CelBodyAPI.h>
Collaboration diagram for ATMOSPHERE:

8.4.1 Detailed Description
Defines the physical atmospheric properties for a celestial body.
See also:

CELBODY2

Public Types

e enum PRM_IN_FLAG {

PRM_ALT = 0x0001, PRM_LNG = 0x0002, PRM_LAT = 0x0004, PRM_FBR = 0x0008,

PRM_F = 0x0010, PRM_AP = 0x0020 }

Parameter flags for atmospheric data input.

Public Member Functions

* ATMOSPHERE (CELBODY?2 *body)

Constructor. Creates an atmosphere instance for "body’.

e virtual const char * clbkName () const =0

A brief name that identifies the atmosphere model.

e virtual bool clbkConstants (ATMCONST =xatmc) const

Returns some general properties of the atmosphere.

* virtual bool clbkParams (const PRM_IN sprm_in, PRM_OUT xprm_out)

Called by Orbiter to obtain atmospheric parameters for a given set of input parameters at the current

simulation time.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.4 ATMOSPHERE Class Reference 194

Protected Attributes

* CELBODY?2 * cbody

associated celestial body instance

Classes

e struct PRM_IN

Input parameters for atmospheric data calculation.

e struct PRM_OUT

Output parameters for atmospheric data calculation.

8.4.2 Member Enumeration Documentation

8.4.2.1 enum ATMOSPHERE::PRM_IN_FLAG

Parameter flags for atmospheric data input.

See also:

ATMPRM_IN

Enumerator:

PRM_ALT altitude valid (otherwise use alt=0)

PRM_LNG longitude valid (otherwise use Ing=0)
PRM_LAT latitude valid (otherwise use lat=0)

PRM_FBR average flux valid (otherwise use f107avg=140)
PRM_F current flux valid (otherwise use f107=f107avg)
PRM_AP geomagnetic index valid (otherwise use ap=3)

8.4.3 Constructor & Destructor Documentation

8.4.3.1 ATMOSPHERE::ATMOSPHERE (CELBODY?2 * body)

Constructor. Creates an atmosphere instance for ’body’.

Parameters:

body pointer to celestial body

8.4.4 Member Function Documentation

8.4.4.1 virtual const charx ATMOSPHERE::clbkName () const [pure virtual]

A brief name that identifies the atmosphere model.

Returns:

Pointer to persistent string buffer that contains the model name.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.4 ATMOSPHERE Class Reference 195

Note:

The returned name should not be longer than approx. 10 characters.

8.4.4.2 virtual bool ATMOSPHERE::clbkConstants (ATMCONST = atmc) const [virtual]

Returns some general properties of the atmosphere.

Parameters:

atmc pointer to structure to be filled by clbkConstants

Returns:

true if paramters were supplied, false otherwise.

Default action:

Sets the following structure entries to default values:
e atmc->R =286.91

e atmc->gamma = 1.4 but leaves the other values unchanged. Returns false.

Note:

This function should be overloaded to provide appropriate basic physical atmospheric properties, such
as sea level density and pressure, gas constant, cutoff altitude, as well as rendering colour and rendering
altitude.

For complex atmospheric models, some of the parameters in the ATMCONST structure may not be
constants (e.g. ground density and pressure. In that case, the return values should be reasonable mean
values.

Some of these values may be overwritten by configuration file settings.

8.4.4.3 virtual bool ATMOSPHERE::clbkParams (const PRM_IN x prm_in, PRM_OUT x prm_-
out) [virtual]

Called by Orbiter to obtain atmospheric parameters for a given set of input parameters at the current simu-
lation time.

Parameters:

prm_in input parameters for atmospheric data calculation (see PRM_IN)

prm_out returned data (see PRM_OUT)

Returns:

true if atmospheric data were calculated and returned, false if the planet has no atmosphere or if the
specified position is outside the supported distance of the atmospheric model.

Default action:

None, returns false.

The documentation for this class was generated from the following file:

* Orbitersdk/include/CelBodyAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.5 ATMOSPHERE::PRM_IN Struct Reference 196

8.5 ATMOSPHERE::PRM 1IN Struct Reference

#include <CelBodyAPI.h>

8.5.1 Detailed Description
Input parameters for atmospheric data calculation.

See also:

clbkAtmParam

Public Attributes

¢ double alt
altitude [m]

* double Ing
longitude [rad]

¢ double lat
latitude [rad]

double f107bar

average F10.7 flux over recent period

double 107
current F10.7 flux

* double ap

magnetic index

DWORD flag
parameter flags (see PRM_IN_FLAG)

The documentation for this struct was generated from the following file:

* Orbitersdk/include/CelBodyAPILh

8.6 ATMOSPHERE::PRM_OUT Struct Reference

#include <CelBodyAPI.h>

8.6.1 Detailed Description
Output parameters for atmospheric data calculation.

See also:

clbkAtmParam

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.7 ATMPARAM Struct Reference

197

Public Attributes

e double T

temperature [K]

e double p

pressure [Pa]

* double rho
density [kg/m”™3]

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/CelBodyAPLh

8.7 ATMPARAM Struct Reference

#include <OrbiterAPI.h>

8.7.1 Detailed Description

Atmospheric parameters structure.

Public Attributes

e double T

temperature [K]

* double p

pressure [Pa]

¢ double rho
density [kg/m” 3]

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.8 BEACONLIGHTSPEC Struct Reference

#include <OrbiterAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.8 BEACONLIGHTSPEC Struct Reference

198

Collaboration diagram for BEACONLIGHTSPEC:

8.8.1 Detailed Description

vessel beacon light parameters

Public Attributes

DWORD shape

beacon shape identifier (see Light beacon shape parameters)

« VECTOR3 * pos

pointer to position in vessel coordinates

¢ VECTOR3 * col

pointer to beacon RGB colour

¢ double size

beacon radius

¢ double falloff

distance falloff parameter

* double period

strobe period (0 for continuous)

¢ double duration

strobe duration

¢ double tofs

strobe time offset

¢ bool active

beacon lit?

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.9 oapi::Brush Class Reference 199

8.9 oapi::Brush Class Reference

#include <DrawAPI.h>

Inheritance diagram for oapi::Brush:

Collaboration diagram for oapi::Brush:

8.9.1 Detailed Description

A brush is a drawing resource for filling closed figures (rectangles, ellipses, polygons).

Public Member Functions

e virtual ~Brush ()

Brush destructor.

Protected Member Functions

¢ Brush (DWORD col)

Brush constructor.

8.9.2 Constructor & Destructor Documentation

8.9.2.1 oapi::Brush::Brush (DWORD col) [inline, protected]

Brush constructor.

Parameters:

col brush colour (format: 0xBBGGRR)

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/DrawAPIL.h

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.10 CELBODY Class Reference 200

8.10 CELBODY Class Reference

#include <CelBodyAPI.h>
Inheritance diagram for CELBODY:

8.10.1 Detailed Description

This is the base class for celestial body classes.

CELBODY defines callback methods which Orbiter will call whenever it requires information from your
planet module. You define the behaviour of the planet by overloading the relevant methods. Below is a list
of public CELBODY methods:

See also:

Planet Modules

Public Member Functions

e int Version () const

Return version number.

* virtual bool bEphemeris () const

Returns true or false depending on whether the module supports ephemeris calculation.

* virtual void clbkInit (FILEHANDLE cfg)

Called when the planet is initialised at the beginning of a simulation run.

* virtual int clbkEphemeris (double mjd, int req, double *ret)

Called when Orbiter requires (non-sequential) ephemeris data from the planet for a given time.

* virtual int clbkFastEphemeris (double simt, int req, double *ret)

Called by Orbiter to update the body’s state to the next simulation frame.

e virtual bool clbkAtmParam (double alt, ATMPARAM x*prm)

Called by Orbiter to obtain atmospheric parameters at a given altitude.

Protected Member Functions

¢ void Pol2Crt (double *pol, double *crt)

Convert from polar to cartesian coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.10 CELBODY Class Reference 201

Protected Attributes

¢ short version

version number

8.10.2 Member Function Documentation

8.10.2.1 int CELBODY::Version () const [inline]

Return version number.

Returns:

Version number (1 for CELBODY, 2 for CELBODY?2)

8.10.2.2 virtual bool CELBODY::bEphemeris () const [virtual]

Returns true or false depending on whether the module supports ephemeris calculation.

Returns:
If your module supports ephemeris calculation (that is, if it defines the clbkEphemeris and
clbkFastEphemeris methods) return true. Otherwise return false.

Default action:

Returns false.

8.10.2.3 virtual void CELBODY::clbkInit (FILEHANDLE c¢fg) [virtuall]
Called when the planet is initialised at the beginning of a simulation run.

This function allows to read any parameters from the configuration file, and perform additional initialisation
tasks such as reading data files.

Parameters:

¢fg file handle of configuration file

Default action:

None.

Reimplemented in CELBODY?2.

8.10.2.4 virtual int CELBODY::clbkEphemeris (double mjd, int req, double *x ref) [virtual]

Called when Orbiter requires (non-sequential) ephemeris data from the planet for a given time.

Parameters:

mjd ephemeris date (days, in Modified Julian Date format)

req data request bitflags (see notes)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.10 CELBODY Class Reference 202

ret pointer to result vector

Returns:

bitflags describing returned data (see notes)

Default action:

None, returning 0

Note:

The ephemeris data should be calculated with respect to the body’s parent body, in the ecliptic frame
(J2000 equator and equinox).

req specifies the data that should be calculated by the callback function. This can be any combination
of

* EPHEM_TRUEPOS (true body position)
e EPHEM_TRUEVEL (true body velocity)
e EPHEM_BARYPOS (barycentric position)
* EPHEM_BARYVEL (barycentric velocity)

where the barycentre refers to the system consisting of the body itself and all its children (e.g. moons).
ret is a pointer to an array of 12 doubles, to which the function should write its results:

e ret[0-2]: true position (if requested)

e ret[3-5]: true velocity (if requested)

* ret[6-8]: barycentric position (if requested)
* ret[9-11]: barycentric velocity (if requested)

Data can be returned in either polar or cartesian format. In cartesian format, the position data blocks
should contain X,y and z position (in meters), and the velocity data blocks should contain dx/dt, dy/dt
and dz/dt (in m/s), where x points to the vernal equinox, y points to ecliptic zenith, and z is orthogonal
to both.

In polar format, the position data blocks should contain longitude j [rad], latitude q [rad] and radial
distance r [AU], and the velocity data blocks should contain dj/dt [rad/s], dq/dt [rad/s] and d r/dt [AU/s].
When returning data in polar format, include the EPHEM_POLAR flag in the return value.

The return value should contain the flags for the data that were actually computed. For example, if both
true and barycentric data were requested, but the module can only compute true positions, it should
return EPHEM_TRUEPOS | EPHEM_TRUEVEL.

If the true and barycentric positions are identical (that is, if the body has no child objects) the return
value should contain the additional flag EPHEM_BARYISTRUE.

If both true and barycentric data are requested, but are computationally expensive to compute (for
example, if they require two separate series evaluations), the module can return true positions only.
Orbiter will then calculate the barycentric data directly, after evaluating the child object positions.

If a request can’t be satisfied at all (e.g. if barycentric data were requested, but the module can only
compute true positions), the module should calculate whatever data it can, and signal so via the return
value. Orbiter will then try to convert these data to the required ones.

If the returned ephemerides are computed in terms of the barycentre of the parent body’s system, the
return value should include the EPHEM_PARENTBARY flag. If the ephemerides are computed in terms
of the parent body’s true position, this flag should not be included.

This function is not called by Orbiter to update the planet’s position during the normal simulation frame
update. (For that purpose, clbkFastEphemeris() is called instead). clbkEphemeris() is only called if the
planet state at some arbitrary time point is required, e.g. by an instrument calculating a transfer orbit.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.10 CELBODY Class Reference 203

8.10.2.5 virtual int CELBODY::clbkFastEphemeris (double simt, int req, double x ret)
[virtual]

Called by Orbiter to update the body’s state to the next simulation frame.

Parameters:

simt simulation time (seconds)
req data request bitflags (see notes)

ret pointer to result vector

Returns:

bitflags describing returned data (see notes)

Default action:

None, returning 0

Note:

This function should perform the same function as clbkEphemeris(), but it will be called at each sim-
ulation frame. This means that the sampling times will be incremented in small steps, allowing for a
potentially more efficient implementation, e.g. by using an interpolation scheme.

If possible, a full evaluation of a long series of perturbation terms should be avoided here, to avoid
performance hits.

Note that the time parameter is passed in the form of simulation time (seconds) unlike clbkEphemeris(),
which uses absolute MJD time. This avoids rounding errors in the time variable, and allows higher
temporal resolutions.

8.10.2.6 virtual bool CELBODY::clbkAtmParam (double alt, ATMPARAM x prm) [virtual]

Called by Orbiter to obtain atmospheric parameters at a given altitude.

Parameters:

alt altitude over planet mean radius

prm pointer to ATMPARAM structure receiving results

Returns:
true if parameters have been retrieved sucessfully, false to indicate that the planet has no atmosphere,
or if alt is above the cutoff limit for atmospheric calculations.

Default action

None, returning false.

Note:
The ATMPARAM structure contains the following fields:

typedef struct {

double T; // temperature [K]

double p; // pressure [Pa]

double rho; // density [kg/m³]
} ATMPARAM;

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.11 CELBODY?2 Class Reference 204

Currently, atmospheric parameters are assumed to be functions of altitude only. Local variations
("weather") are not yet supported.

The documentation for this class was generated from the following file:

* Orbitersdk/include/CelBodyAPLh

8.11 CELBODY2 Class Reference

#include <CelBodyAPI.h>
Inheritance diagram for CELBODY2:

Collaboration diagram for CELBODY?2:

8.11.1 Detailed Description

Extension to CELBODY class.

This class introduces extended atmosphere support. It contains an ATMOSPHERE class instance which
handles all atmosphere data requests. The atmosphere class can be either defined directly in the celestial
body’s plugin module, or it can be loaded from an external module. This latter option allows to replace
atmospheric models easily, without having to re-implement other parts of the code, such as the ephemeris
calculations.

See also:

CELBODY, ATMOSPHERE

Public Member Functions

* CELBODY2 (OBJHANDLE hCBody)
Constructor. Creates a CELBODY? instance for a celestial body.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.11 CELBODY?2 Class Reference 205

e virtual ~CELBODY?2 ()
Destructor. Destroys the CELBODY? instance.

* virtual void clbkInit (FILEHANDLE cfg)

Module initialisation from configuration file settings.

* OBJHANDLE GetHandle () const

Returns the handle of the associated object.

¢ OBJHANDLE GetParent () const
Returns the handle for the parent body in the solar system hierarchy.

* OBJHANDLE GetChild (DWORD idx) const

Returns for a child body in the solar system hierarchy.

¢ double SidRotPeriod () const
Returns the siderial period of the celestial body.

* ATMOSPHERE * GetAtmosphere () const

Returns the body’s atmosphere instance.

* virtual bool Legacy Atmospherelnterface () const

Flags the atmosphere interface version.

Protected Member Functions

* void SetAtmosphere (ATMOSPHERE xa)

Assigns an atmosphere object for the celestial body.

* bool FreeAtmosphere ()

Remove the atmosphere instance.

* bool LoadAtmosphereModule (const char xfname)

Loads an atmosphere instance from a DLL plugin.

* bool FreeAtmosphereModule ()

Unload the current atmosphere module.

Protected Attributes

* OBJHANDLE hBody
handle for the associated celestial body

* ATMOSPHERE * atm

pointer to atmosphere object

* HINSTANCE hAtmModule

library handle for external atmosphere module

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.11 CELBODY?2 Class Reference 206

Friends

¢ class ATMOSPHERE

8.11.2 Constructor & Destructor Documentation

8.11.2.1 CELBODY2::CELBODY2 (OBJHANDLE hCBody)
Constructor. Creates a CELBODY?2 instance for a celestial body.

Parameters:

hCBody body handle

8.11.2.2 virtual CELBODY2::~CELBODY2 () [virtual]
Destructor. Destroys the CELBODY?2 instance.

Default action:

Calls the FreeAtmosphere method, to delete the atmosphere instance and unload any external atmo-
sphere modules.

8.11.3 Member Function Documentation

8.11.3.1 virtual void CELBODY2::clbkInit (FILEHANDLE cfg) [virtual]

Module initialisation from configuration file settings.

Parameters:

¢fg file handle for configuration file

Default action:

¢ Calls the base class CELBODY::clbkInit method

— If an atmosphere module is not already loaded, and if the configuration file contains a
MODULE_ATM entry, the Load AtmosphereModule method is called with the correspond-
ing module file name.

Reimplemented from CELBODY.

8.11.3.2 OBJHANDLE CELBODY2::GetParent () const

Returns the handle for the parent body in the solar system hierarchy.

Returns:

Parent body handle, or NULL if no parent.

Note:

For primary planets, this method returns a handle to the central star. For moons, it returns a handle to
the parent planet. For the central star itself, it returns NULL.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.11 CELBODY?2 Class Reference 207

8.11.3.3 OBJHANDLE CELBODY2::GetChild (DWORD idx) const

Returns for a child body in the solar system hierarchy.

Parameters:
idx child body index (>=0)
Returns:

Child body handle, or NULL if not available.

Note:

For the central star, this returns the handles of the primary planets.
For planets, it returns the handles of the moons.
If idx >= number of children, the function returns NULL.

8.11.3.4 double CELBODY2::SidRotPeriod () const

Returns the siderial period of the celestial body.

Returns:

Siderial rotation period [s]

8.11.3.5 ATMOSPHERE:+x CELBODY2::GetAtmosphere () const [inline]

Returns the body’s atmosphere instance.

Returns:

pointer to atmosphere object, or NULL if the body has no atmosphere.

Note:

To provide an atmosphere for the body, the CELBODY?2 object should instantiate the atm member as
an object of a derived ATMOSPHERE class.

8.11.3.6 virtual bool CELBODY2::LegacyAtmospherelnterface () const [inline, virtual]

Flags the atmosphere interface version.

Returns:

false indicates that Orbiter should use the ATMOSPHERE object returned by GetAtmosphere to query
atmospheric parameters. frue indicates that Orbiter should use the CELBODY::clbkAtmParam method
instead.

Note:

If the body does not have an atmosphere, this method should return false, and GetAtmosphere should
return NULL.

See also:

GetAtmosphere, CELBODY::clbkAtmParam

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.11 CELBODY?2 Class Reference 208

8.11.3.7 void CELBODY2::SetAtmosphere (ATMOSPHERE xa) [protected]

Assigns an atmosphere object for the celestial body.

Parameters:

a pointer to ATMOSPHERE object

Note:

Any previously defined atmosphere object is deallocated and replaced.

a = NULL will eliminate the body’s atmosphere.

By default (prior to the first call to SetAtmosphere, a celestial body does not have an atmosphere.
Use this function if the atmosphere class is defined directly in the celestial body’s module. For exam-

ple,
class MyAtmosphere: public ATMOSPHERE
{ MyAtmosphere (CELBODY2 *body) : ATMOSPHERE (body)
{}
y .
class MyCelbody: public CELBODY2

{
MyCelbody (OBJHANDLE body): CELBODY2 (body)

{
SetAtmosphere (new MyAtmosphere (this));

bi

If the atmosphere class is defined in an external module, use the LoadAtmosphereModule method
instead.

8.11.3.8 bool CELBODY2::FreeAtmosphere () [protected]

Remove the atmosphere instance.

Returns:

true on success, false on failure (no atmosphere defined).

Note:

This method calls FreeAtmosphereModule, if an external atmosphere module is loaded. Otherwise, is
just deletes the atm instance.

8.11.3.9 bool CELBODY2::LoadAtmosphereModule (const char * fname) [protected]

Loads an atmosphere instance from a DLL plugin.

Parameters:

Jname DLL file name (excluding *.d1l’ extension and relative to "Modules\’ folder)

Returns:

true if atmosphere module could be loaded, false otherwise

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.12 COLOUR4 Struct Reference 209

Note:

If successful, this method sets the hAtmModule member to the atmospheric module instance handle,
and sets the atm member by calling the Create Atmosphere function in the module. The Create Atmo-
sphere function has the following interface:

ATMOSPHERE *CreateAtmosphere (CELBODY2 xcbody) ;

8.11.3.10 bool CELBODY2::FreeAtmosphereModule () [protected]

Unload the current atmosphere module.

Returns:

true indicates success, false indicates failure (no module loaded)

Note:

Before unloading the module, this function first deletes the atmosphere instance by calling the mod-
ule’s Delete Atmosphere function. The interface is

void DeleteAtmosphere (ATMOSPHERE xatm);

If this function is not found in the module, the atmosphere instance is deleted directly.

The documentation for this class was generated from the following file:

* Orbitersdk/include/CelBodyAPLh

8.12 COLOUR4 Struct Reference

#include <OrbiterAPI.h>

8.12.1 Detailed Description

colour definition

Public Attributes

e floatr

read colour component [0..1]

e floatg

green colour component [0..1]

e floatb

blue colour component [0..1]

e float a

alpha (opacity) component (0..1)

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.13 oapi::DrawingTool Class Reference 210

8.13 oapi::DrawingTool Class Reference

#include <DrawAPI.h>

Inheritance diagram for oapi::DrawingTool:

8.13.1 Detailed Description

Base class for various 2-D drawing resources (fonts, pens, brushes, etc.).

Public Member Functions

* DrawingTool ()

Drawing tool constructor:

e virtual ~DrawingTool ()

Drawing tool destructor.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/DrawAPI.h

8.14 ELEMENTS Struct Reference

#include <OrbiterAPI.h>

8.14.1 Detailed Description

Kepler orbital elements.

A set of 6 scalar parameters defining the state of an object in a 2-body (Keplerian) orbit. The orbital
trajectory is a conic section, either closed (circular, elliptic), or open (parabolic, hyperbolic).

Note:

semi-major axis a is positive for closed orbits, and negative for open orbits (in that case, a is referred
to as real semi-axis).
eccentricity e:

e circular orbit: e = 0
e elliptic orbit: 0 < e < 1
 parabolic orbit: e = 1

* hyperbolic orbit: e > 1

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.15 ENGINESTATUS Struct Reference 211

The a and e parameters define the shape of the orbit, the i, theta and omegab parameters define the
orientation of the orbital plane in space, and the L parameter defines the object position along the
trajectory at a given time.

This is a generic data format. Additional data are required to fully define an object’s state in space
(position and velocity vectors). These include the position of the orbited body, the orientation of the
reference coordinate system, and the date to which the mean longitude parameter refers.

See also:

ORBITPARAM, Basics of orbital mechanics

Public Attributes

e double a

semi-major axis [m]

e double e

eccentricity

¢ double i

inclination [rad]

¢ double theta

longitude of ascending node [rad]

* double omegab

longitude of periapsis [rad]

e double L

mean longitude at epoch

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.15 ENGINESTATUS Struct Reference

#include <OrbiterAPI.h>

8.15.1 Detailed Description

Engine status.

Public Attributes

¢ double main
-1 (full retro) .. +1 (full main)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.16 EXHAUSTSPEC Struct Reference

212

* double hover
0.. +1 (full hover)

¢ int attmode

O=rotation, 1=translation

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPIL.h

8.16 EXHAUSTSPEC Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for EXHAUSTSPEC:

8.16.1 Detailed Description
Engine exhaust render parameters.

See also:

VESSEL::AddExhaust(EXHAUSTSPECx)

Public Attributes

 THRUSTER_HANDLE th

handle of associated thruster (or NULL if none)

e double * level

pointer to variable containing exhaust level (0..1)

VECTORS3 Ipos

pointer to exhaust position vector [m]

VECTORS3 s Idir

pointer to engine thrust direction (=negative exhaust direction)

¢ double Isize

exhaust length [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.17 ExternMFD Class Reference 213

¢ double wsize

exhaust width [m]

double lofs

longitudinal offset from engine [m]

¢ double modulate

magnitude of random intensity variations (0..1)

SURFHANDLE tex

custom texture handle

DWORD flags
Bit flags (see Bitflags for EXHAUSTSPEC flags field.).

UINT id

reserved

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.17 ExternMFD Class Reference

#include <MFDAPI.h>

8.17.1 Detailed Description

ExternMFD provides support for defining an MFD display in a plugin module.

ExternMFD provides support for defining an MFD display in a plugin module, e.g. for displaying the
MFD in a dialog box. Unlike the MFD class described above, which defines a logical MFD mode, this
class represents an actual MFD instrument, i.e. the physical display and associated push buttons.

A plugin module should derive its own MFD class from ExternMFD and overload the virtual notification
callback methods.

The class interface is defined in Orbitersdk\include\MFDAPLh.
For an example using the ExternMFD class, see project Orbitersdk\samples\ExtMFD.

Public Member Functions

e ExternMFD (const MFDSPEC &spec)

Constructor. Creates a new instance of ExternMFD.

e virtual ~ExternMFD ()

Destructor. Deallocates the ExternMFD instance.

e UINT Id () const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.17

ExternMFD Class Reference

214

Returns an identifier for the MFD instance.

bool Active () const

Returns a flag indicating active/passive MFD state.

OBJHANDLE GetVessel () const

Returns the handle of the vessel associated with the MFD.

virtual void SetVessel (OBJHANDLE hV)
Attaches the MFD to a different vessel.

SURFHANDLE GetDisplaySurface () const

Returns a handle to the surface containing the current MFD display.

const char * GetButtonLabel (int bt) const

Returns the label currently associated with one of the MFD buttons.

bool ProcessButton (int bt, int event)

bool SendKey (DWORD key)

bool Resize (const MFDSPEC &spec)

bool SetMode (int mode)

bool OpenModeHelp () const

virtual void clbkUpdate ()

virtual void clbkRefreshDisplay (SURFHANDLE hSurf)
virtual void clbkRefreshButtons ()

virtual void clbkFocusChanged (OBJHANDLE hFocus)

Public Attributes

Instrument * instr

Protected Attributes

OBJHANDLE hVessel
vessel associated with the MFD

int DW
int DH

display width, height (pixel)

int pmode

previous mode identifier

int nbtl
int nbt2

number of left, right buttons

int bty0
int btdy

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.17 ExternMFD Class Reference 215

geometry parameters

* int btpressed

currently pressed button (-1 if none)

8.17.2 Constructor & Destructor Documentation

8.17.2.1 ExternMFD::ExternMFD (const MFDSPEC & spec)
Constructor. Creates a new instance of ExternMFD.
Parameters:

spec structure containing MFD layout geometry data

Note:

To use a new MFD instance, it must be registered with Orbiter via a call to oapiRegisterExternMFD(),
e.g. with oapiRegisterExternMFD(new ExternMFD (spec));

To unregister an MFD instance, use oapiUnregisterExternMFD(). Note that oapiUnregisterExtern-
MFD() automatically calls the ~ExternMFD() destructor, so the plugin should not try to delete the
MFD instance manually.

8.17.2.2 virtual ExternMFD::~ExternMFD () [virtual]
Destructor. Deallocates the ExternMFD instance.
Note:

The destructor should not be called directly by the module. Instead, a call to oapiUnregisterExtern-
MFD() will invoke the ~ExternMFD() destructor (or the overloaded destructor of a derived class), as
well as remove the MFD instance from Orbiter’s internal list of MFDs.

8.17.3 Member Function Documentation

8.17.3.1 UINT ExternMFD::Id () const

Returns an identifier for the MFD instance.
Returns:

A unique identifier for the MFD instance.
Note:

Unlike the internal MFD instances (e.g. MFDs embedded in panels) whose identifiers are in the range
0 ... MAXMFD-1, the ExternMFD class simply uses its own instance pointer (UINT)this to create an
identifier.

8.17.3.2 bool ExternMFD::Active () const

Returns a flag indicating active/passive MFD state.

Returns:

true indicates that the MFD is active (switched on), false indicates inactive (switched off).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.17 ExternMFD Class Reference 216

8.17.3.3 OBJHANDLE ExternMFD::GetVessel () const

Returns the handle of the vessel associated with the MFD.

Returns:

Vessel handle associated with the MFD.

Note:

Normally, the ExternMFD class always connects to the "focus vessel”, i.e. the vessel receiving user
input. If the user switches to a different vessel (e.g. via F3), then ExternMFD re-attaches itself to the
new vessel.

This behaviour can be changed by overloading the clbkFocusChanged() method. For example, the
MED could be forced to stick to a given vessel, regardless of the focus object.

8.17.3.4 virtual void ExternMFD::SetVessel (OBJHANDLE hV) [virtual]
Attaches the MFD to a different vessel.

Parameters:

hV vessel handle
Default behaviour: Sets the vessel reference to hV. If an MFD mode is active, the mode is closed
and reopened with the new vessel reference.

8.17.3.5 SURFHANDLE ExternMFD::GetDisplaySurface () const

Returns a handle to the surface containing the current MFD display.

Returns:

Handle to the MFD display surface.

Note:

The handle can be used to modify or copy the current contents of the MFD display. For example, you
can obtain a GDI drawing device context for the surface with oapiGetDC().

8.17.3.6 const charx ExternMFD::GetButtonLabel (int bf) const

Returns the label currently associated with one of the MFD buttons.

Parameters:

bt button number (0 <= bt < nbuttons)

Returns:

Pointer to the label associated with the button (up to 3 characters, zeroterminated), or NULL if no
function is associated with the button by the current MFD mode.

Note:

The number of buttons provided by the MFD depends on the data passed to the constructor in the
MFDSPEC structure.

The module can use this method to update its button labels within the clbkRefreshButtons() callback
function.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.18 FogParam Struct Reference 217

8.17.3.7 bool ExternMFD::ProcessButton (int b¢, int event)
TODO

8.17.3.8 bool ExternMFD::SendKey (DWORD key)
TODO

8.17.3.9 bool ExternMFD::Resize (const MFDSPEC & spec)
TODO

8.17.3.10 bool ExternMFD::SetMode (int mode)
TODO

8.17.3.11 bool ExternMFD::OpenModeHelp () const
TODO

8.17.3.12 virtual void ExternMFD::clbkUpdate () [virtual]
TODO

8.17.3.13 virtual void ExternMFD::clbkRefreshDisplay (SURFHANDLE hASurf) [virtual]
TODO

8.17.3.14 virtual void ExternMFD::clbkRefreshButtons () [virtual]
TODO

8.17.3.15 virtual void ExternMFD::clbkFocusChanged (OBJHANDLE hFocus) [virtual]
TODO

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/MFDAPI.h

8.18 FogParam Struct Reference

#include <GraphicsAPI.h>

Collaboration diagram for FogParam:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.19 oapi::Font Class Reference 218

8.18.1 Detailed Description

Distance fog render parameters.

Public Attributes

e double dens_0O
fog density at ground level

¢ double dens_ref

fog density at reference altitude

¢ double alt_ref

reference altitude [m]

VECTORS3 col

fog colour

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/GraphicsAPLh

8.19 oapi::Font Class Reference

#include <DrawAPI.h>

Inheritance diagram for oapi::Font:

Collaboration diagram for oapi::Font:

8.19.1 Detailed Description

A font resource for drawing text. A font has a defined size, typeface, slant, weight, etc. Fonts can be
selected into a Sketchpad and then apply to all subsequent Text calls.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.19 oapi::Font Class Reference 219

Public Types

e enum Style { NORMAL =0, BOLD = 1, ITALIC = 2, UNDERLINE =4 }

Font decoration style.

Public Member Functions

e virtual ~Font ()

Font destructor.

e virtual HFONT GetGDIFont () const
Return the GDI handle for the font, if available.

Protected Member Functions

* Font (int height, bool prop, const char xface, Style style=NORMAL, int orientation=0)

Font constructor.

8.19.2 Member Enumeration Documentation

8.19.2.1 enum oapi::Font::Style

Font decoration style.

See also:

Font(int,bool,charx,Style)

Enumerator:

NORMAL no decoration
BOLD boldface
ITALIC italic
UNDERLINE underlined

8.19.3 Constructor & Destructor Documentation
8.19.3.1 oapi::Font::Font (int height, bool prop, const char x face, Style style = NORMAL, int orienta-
tion=0) [inline, protected]

Font constructor.

Parameters:
height cell or character height [pixel]
prop proportional/fixed width flag
face font face name

style font decoration

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 220

orientation text orientation [1/10 deg]

Note:

If height > 0, it represents the font cell height. If height < 0, its absolute value represents the character
height.

The style parameter can be any combination of the Style enumeration items.

Overloaded font implementations should understand at least the following generic face names: "Fixed"
(fixed pitch font), "Sans" (sans-serif font, and "Serif" (serif font) and translate them to appropriate
specific fonts, e.g. "Courier" or "Courier New" for "Fixed", "Helvetica" or "Arial" for "Sans", and
"Times" or "Times New Roman" for "Serif".

If a font name is not recognised, the prop value should be checked. If prop==true, the default "Sans"
font should be used. If false, the default "Fixed" font should be used.

8.19.4 Member Function Documentation

8.19.4.1 virtual HFONT oapi::Font::GetGDIFont () const [inline, virtuall]
Return the GDI handle for the font, if available.

Returns:

GDI font handle

Note:

Non-GDI clients should not overload this method.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/DrawAPI.h

8.20 oapi::GraphicsClient Class Reference

#include <GraphicsAPI.h>

Inheritance diagram for oapi::GraphicsClient:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 221

Collaboration diagram for oapi::GraphicsClient:

8.20.1 Detailed Description

Base class for external graphics client modules.

This class defines the interface between the graphics-less version of the Orbiter core and any external
plugins providing a rendering environment for the orbiter-generated scene. The GraphicsClient base class
is defined in terms of generic graphics objects (meshes, textures, etc.) Derived classes can then adapt these
into specific rendering objects for a given 3-D rendering engine (DX, OGL, etc.)

Public Member Functions

 GraphicsClient (HINSTANCE hlnstance)

Create a graphics object.

e virtual ~GraphicsClient ()
Destroy the graphics object.

e virtual bool clbklnitialise ()

Perform any one-time setup tasks.

e virtual void clbkRefreshVideoData ()

Request for video configuration data.

* virtual SURFHANDLE clbkLoadTexture (const char xfname, DWORD flags=0)

Texture request.

e virtual void clbkReleaseTexture (SURFHANDLE hTex)

Texture release request.

e virtual bool clbkSetMeshTexture (DEVMESHHANDLE hMesh, DWORD texidx, SURFHANDLE
tex)

Replace a texture in a device-specific mesh.

e virtual int clbkSetMeshMaterial (DEVMESHHANDLE hMesh, DWORD matidx, const MATE-
RIAL xmat)

Replace properties of an existing mesh material.

* virtual bool clbkSetMeshProperty (DEVMESHHANDLE hMesh, DWORD property, DWORD
value)

Set custom properties for a device-specific mesh.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20

oapi::GraphicsClient Class Reference 222

virtual ScreenAnnotation * clbkCreate Annotation ()

Create an annotation object for displaying on-screen text.

virtual LRESULT RenderWndProc (HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
IParam)

Render window message handler.

virtual BOOL LaunchpadVideoWndProc (HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM IParam)

Message handler for "video’ tab in Orbiter Launchpad dialog.

VIDEODATA * GetVideoData ()

Returns a pointer to the VideoData structure.

DWORD GetPopupList (const HWND #xhPopupWnd) const

returns a list of popup windows owned by the render window.

virtual bool clbkFullscreenMode () const =0

Fullscreen mode flag.

virtual void clbkGetViewportSize (DWORD xwidth, DWORD xheight) const =0

Returns the dimensions of the render viewport.

virtual bool clbkGetRenderParam (DWORD prm, DWORD xvalue) const =0

Returns a specific render parameter.

const void * GetConfigParam (DWORD paramtype) const

Returns a pointer to an Orbiter configuration parameter.

bool TexturePath (const char «fname, char *path) const

Return the full path for a texture file.

SURFHANDLE GetVCHUDSurface (const VCHUDSPEC *xhudspec) const

Returns the surface containing the virtual cockpit HUD.

SURFHANDLE GetMFDSurface (int mfd) const
Returns the surface containing an MFD display.

SURFHANDLE GetVCMFDSurface (int mfd, const VCMFDSPEC xxmfdspec) const

Returns the surface containing a virtual cockpit MFD display.

DWORD GetBaseTileList (OBJHANDLE hBase, const SurftileSpec xtile) const

Returns a list of high-res surface tile specifications for a base.

void GetBaseStructures (OBJHANDLE hBase, MESHHANDLE xxmesh_bs, DWORD xnmesh_bs,
MESHHANDLE **mesh_as, DWORD xnmesh_as) const

Returns meshes for generic base objects.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 223

* void GetBaseShadowGeometry (OBJHANDLE hBase, MESHHANDLE xxmesh_sh, double xxelev,
DWORD *nmesh_sh) const

Returns base meshes in a format that can be used for shadow projections.

e virtual void clbkRender2DPanel (SURFHANDLE xhSurf, MESHHANDLE hMesh, MATRIX3 *T,
bool transparent=false)

Render an instrument panel in cockpit view as a 2D billboard.

¢ DWORD LoadStars (DWORD n, StarRec *rec)
Load star data from Orbiter’s data base file.

* DWORD LoadConstellationLines (DWORD n, ConstRec *rec)

Load constellation line data from Orbiter’s data base file.

Visual object interface

* void RegisterVisObject (OBJHANDLE hObj, VISHANDLE vis)

Register a new visual object with Orbiter.

* void UnregisterVisObject (OBJHANDLE hObj)

Unregister a visual before deleting it.

* virtual int clbkVisEvent (OBJHANDLE hObj, VISHANDLE vis, DWORD msg, UINT context)

Message callback for a visual object.

* virtual MESHHANDLE clbkGetMesh (VISHANDLE vis, UINT idx)

Return a mesh handle for a visual, defined by its index.

* virtual int clbkEditMeshGroup (DEVMESHHANDLE hMesh, DWORD grpidx, GROUPEDIT-
SPEC xges)

Mesh group editing interface for device-specific meshes.

Dialog interface

* virtual void clbkPreOpenPopup ()

Popup window open notification.

Particle stream methods

* virtual ParticleStream * clbkCreateParticleStream (PARTICLESTREAMSPEC xpss)

Create a generic particle stream.

* virtual ParticleStream * clbkCreateExhaustStream (PARTICLESTREAMSPEC xpss, OBJHAN-
DLE hVessel, const double *1vl, const VECTOR3 xref, const VECTOR3 *dir)

Create a particle stream associated with a vessel.

* virtual ParticleStream * clbkCreateExhaustStream (PARTICLESTREAMSPEC xpss, OBJHAN-
DLE hVessel, const double *1vl, const VECTOR?3 &ref, const VECTOR3 &dir)

Create a particle stream associated with a vessel.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 224

* virtual ParticleStream * clbkCreateReentryStream (PARTICLESTREAMSPEC xpss, OBJHAN-
DLE hVessel)

Create a vessel particle stream for reentry heating effect.

Surface-related methods

e virtual SURFHANDLE clbkCreateSurface (DWORD w, DWORD h, SURFHANDLE hTem-
plate=NULL)

Create an offscreen surface.

* virtual SURFHANDLE clbkCreateTexture (DWORD w, DWORD h)

Create a texture for rendering.

* virtual SURFHANDLE clbkCreateSurface (HBITMAP hBmp)

Create an offscreen surface from a bitmap.

e virtual void clbkIncrSurfaceRef (SURFHANDLE surf)

Increment the reference counter of a surface.

e virtual bool clbkReleaseSurface (SURFHANDLE surf)
Decrement surface reference counter, release surface if counter reaches 0.

« virtual bool clbkGetSurfaceSize (SURFHANDLE surf, DWORD xw, DWORD xh)
Return the width and height of a surface.

* virtual bool clbkSetSurfaceColourKey (SURFHANDLE surf, DWORD ckey)

Set transparency colour key for a surface.

¢ virtual DWORD clbkGetDeviceColour (BYTE r, BYTE g, BYTE b)

Convert an RGB colour triplet into a device-specific colour value.

Surface blitting methods

* virtual bool clbkBIt (SURFHANDLE tgt, DWORD tgtx, DWORD tgty, SURFHANDLE src,
DWORD flag=0) const

Copy one surface into an area of another one.

* virtual bool clbkBIt (SURFHANDLE tgt, DWORD tgtx, DWORD tgty, SURFHANDLE src,
DWORD srcx, DWORD srcy, DWORD w, DWORD h, DWORD flag=0) const

Copy a rectangle from one surface to another.

* virtual bool clbkScaleBlt (SURFHANDLE tgt, DWORD tgtx, DWORD tgty, DWORD tgtw,
DWORD tgth, SURFHANDLE src, DWORD srcx, DWORD srcy, DWORD srcw, DWORD srch,
DWORD flag=0) const

Copy a rectangle from one surface to another, stretching or shrinking as required.

e virtual bool clbkFillSurface (SURFHANDLE surf, DWORD col) const

Fill a surface with a uniform colour.

¢ virtual bool clbkFillSurface (SURFHANDLE surf, DWORD tgtx, DWORD tgty, DWORD w,
DWORD h, DWORD col) const

Fill an area in a surface with a uniform colour.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 225

* virtual bool clbkCopyBitmap (SURFHANDLE pdds, HBITMAP hbm, int X, int y, int dx, int dy)
Copy a bitmap object into a surface.

2-D drawing interface

» virtual Sketchpad * clbkGetSketchpad (SURFHANDLE surf)

Create a 2-D drawing object ("sketchpad") associated with a surface.

* virtual void clbkReleaseSketchpad (Sketchpad xsp)

Release a drawing object.

* virtual Font * clbkCreateFont (int height, bool prop, const char xface, oapi::Font::Style
style=oapi::Font::NORMAL, int orientation=0) const
Create a font resource for 2-D drawing.

« virtual void clbkReleaseFont (Font *font) const
De-allocate a font resource.

* virtual Pen % clbkCreatePen (int style, int width, DWORD col) const
Create a pen resource for 2-D drawing.

* virtual void clbkReleasePen (Pen xpen) const
De-allocate a pen resource.

e virtual Brush * clbkCreateBrush (DWORD col) const

Create a brush resource for 2-D drawing.

« virtual void clbkReleaseBrush (Brush xbrush) const
De-allocate a brush resource.

GDI-related methods

e virtual HDC clbkGetSurfaceDC (SURFHANDLE surf)

Return a Windows graphics device interface handle for a surface.

« virtual void clbkReleaseSurfaceDC (SURFHANDLE surf, HDC hDC)

Release a Windows graphics device interface.

Marker and label-related methods

* DWORD GetCelestialMarkers (const LABELLIST sxcm_list) const
Returns an array of celestial marker lists.

* DWORD GetSurfaceMarkers (OBJHANDLE hObj, const LABELLIST sx*sm_list) const

Returns an array of surface marker lists for a planet.

Public Attributes

« HWND hVid
Window handle of Launchpad video tab, if available.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference

226

Protected Member Functions

* virtual bool clbkUseLaunchpadVideoTab () const

Launchpad video tab indicator.

e virtual HWND clbkCreateRenderWindow ()

Simulation session start notification.

e virtual void clbkPostCreation ()

Simulation startup finalisation.

e virtual void clbkCloseSession (bool fastclose)

End of simulation session notification.

* virtual void clbkDestroyRenderWindow (bool fastclose)

Render window closure notification.

* virtual void clbkUpdate (bool running)

Per-frame update notification.

e virtual void clbkRenderScene ()=0

Per-frame render notification.

* virtual bool clbkDisplayFrame ()

Display a scene on screen after rendering it.

¢ void Render2DOverlay ()

Notifies Orbiter to to initiate rendering of the 2D scene overlay.

e virtual void clbkStoreMeshPersistent (MESHHANDLE hMesh, const char xfname)

Store a persistent mesh template.

* void ShowDefaultSplash ()

Displays the default Orbiter splash screen on top of the render window.

* HINSTANCE Modulelnstance () const

Returns the graphics module instance handle.

¢ HINSTANCE OrbiterInstance () const

Returns the orbiter core instance handle.

* HWND LaunchpadVideoTab () const
Returns the window handle of the 'video’ tab of the Orbiter Launchpad dialog.

Friends

e class ::Orbiter

Orbiter private class.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 227

Classes

e struct LABELLIST

Label list description for celestial and surface markers.

e struct VIDEODATA

Structure containing default video options, as stored in Orbiter.cfg.

8.20.2 Constructor & Destructor Documentation

8.20.2.1 oapi::GraphicsClient::GraphicsClient (HINSTANCE hlnstance)

Create a graphics object.

The graphics object is typically created during module initialisation (see InitModule). Once the client is
created, it must be registered with the Orbiter core via the oapiRegisterGraphicsClient function.
Parameters:

hInstance module instance handle (as passed to InitModule)

8.20.2.2 virtual oapi::GraphicsClient::~GraphicsClient () [virtual]
Destroy the graphics object.

Usually, the graphics object is destroyed when the module is unloaded (see opcDLLEXit), after is has been
detached from the Orbiter core via a call to oapiUnregisterGraphicsClient.

8.20.3 Member Function Documentation

8.20.3.1 virtual bool oapi::GraphicsClient::clbkInitialise () [virtual]

Perform any one-time setup tasks.

This includes enumerating drivers, graphics modes, etc. Derived classes should also call the base class
method to allow default setup.

Default action:

Initialises the VideoData structure from the Orbiter.cfg file

Calling sequence:

Called during processing of oapiRegisterGraphicsClient, after the Launchpad Video tab has been in-
serted (if clbkUseLaunchpadVideoTab returns true).

8.20.3.2 virtual void oapi::GraphicsClient::clbkRefreshVideoData () [inline, virtual]
Request for video configuration data.

Called by Orbiter before the render window is opened or configuration parameters are written to file.
Applications should here either update the provided VIDEODATA structure from any user selections made
in the Launchpad Video tab and leave it to Orbiter to write these parameters to Orbiter.cfg, or write the
current video settings to their own configuration file.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 228

Default action:

None.

8.20.3.3 virtual SURFHANDLE oapi::GraphicsClient::clbkLoadTexture (const char * frname,
DWORD flags =0) [inline, virtual]

Texture request.

Load a texture from a file into a device-specific texture object, and return a generic SURFHANDLE for
it. Derived classes should overload this method to add texture support. Usually, the client should read
Orbiter’s default texture files (in DXT? format). However, the client also has the option to load its own
texture files stored in a different format, and pass them back via the SUFHANDLE interface.

Parameters:

Jfname texture file name with path relative to orbiter texture folders; can be used as input for Open-
TextureFile.

flags request for texture properties

Returns:

Texture handle, cast into generic SURFHANDLE, or NULL if texture could not be loaded.

Default action:

Return NULL.

Note:

If the client loads its own of texture files, they can either be installed in the default locations, replacing
Orbiter’s set of textures, or stored alongside the original textures, using different names or directory
locations. In the latter case, the fname parameter passed to clbkL.oadTexture must be adapted accord-
ingly (for example, by replacing the dds extension with jpg, or by adding an ’OGL/’ prefix to the path
name, etc). Not overwriting the original texture set has the advantage that other graphics clients relying
on the original textures can still be used.

The following flags are supported:

* bit 0 set: force creation in system memory

e bit 1 set: decompress, even if format is supported by device

* bit 2 set: don’t load mipmaps, even if supported by device

* bit 3 set: load as global resource (can be managed by graphics client)

If bit 3 of flags is set, orbiter will not try to modify or release the texture. The client should manage the
texture (i.e. keep it in a repository and release it at destruction). Any further call of clbkLoadTexture
should first scan the repository. If the texture is already present, the function should just return a
pointer to it.

8.20.3.4 virtual void oapi::GraphicsClient::clbkReleaseTexture @ (SURFHANDLE hT7ex)
[inline, virtual]

Texture release request.

Called by Orbiter when a previously loaded texture can be released from memory. The client can use the
appropriate device-specific method to release the texture.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 229

Parameters:

hTex texture handle

Default action:

None.

8.20.3.5 virtual bool oapi::GraphicsClient::clbkSetMeshTexture (DEVMESHHANDLE hMesh,
DWORD fexidx, SURFHANDLE tex) [inline, virtual]

Replace a texture in a device-specific mesh.

Parameters:
hMesh device mesh handle
texidx texture index (>=0)
tex texture handle
Returns:

Should return true if operation successful, false otherwise.

Default action:

None, returns false.

8.20.3.6 virtual int oapi::GraphicsClient::clbkSetMeshMaterial (DEVMESHHANDLE hMesh,
DWORD matidx, const MATERIAL * mat) [inline, virtuall]

Replace properties of an existing mesh material.

Parameters:

hMesh device mesh handle
matidx material index (>= 0)

mat pointer to material structure

Returns:
Overloaded functions should return an integer error flag, with the following codes: 0="success", 3="in-
valid mesh handle", 4="material index out of range"

Default action:

, None, returns 2 ("client does not support operation").

8.20.3.7 virtual bool oapi::GraphicsClient::clbkSetMeshProperty (DEVMESHHANDLE hMesh,
DWORD property, DWORD value) [inline, virtual]

Set custom properties for a device-specific mesh.

Parameters:

hMesh device mesh handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 230

property property tag
value new mesh property value

Returns:

The method should return true if the property tag was recognised and the request could be executed,
false otherwise.

Note:

Currently only a single mesh property request type will be sent, but this may be extended in future
versions:
e MESHPROPERTY_MODULATEMATALPHA

if value==0 (default) disable material alpha information in textured mesh groups (only use texture
alpha channel).

if value<>0 modulate (mix) material alpha values with texture alpha maps.

Default action:

None, returns false.

8.20.3.8 void oapi::GraphicsClient::Register VisObject (OBJHANDLE h0bj, VISHANDLE vis)

Register a new visual object with Orbiter.

Parameters:

hObj handle of the object to register the visual with

vis identifier for the visual (passed to the message callback function)

Note:

When the client creates a visual for an orbiter object (such as vessels and planets), it must register them
with the core by calling RegisterVisObject. This will allow the visual to receive event notifications via
clbkVisEvent.

Visuals should not be persistent, but should be created when an object comes into visual range of an
observer camera, and deleted when the object moves out of visual range.

If a client supports multiple views, it should not register visuals for an object in each view, but only
once when the object is rendered in any of the views, and unregister when the object is no longer
rendered in any of the views.

vis should be a nonzero handle that allows the client to uniquely identify the visual (e.g. a pointer to
a client-specific visual object instance). The handle is passed to the clbkVisEvent method, and also to
any VESSEL methods that use VISHANDLE: .

For vessel visuals, RegisterVisObject will trigger a VESSEL2::clbkVisualCreated notification to the
vessel module, if it exists.

See also:

UnregisterVisObject, clbkVisEvent, clbkVisualCreated

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 231

8.20.3.9 void oapi::GraphicsClient::Unregister VisObject (OBJHANDLE hObj)

Unregister a visual before deleting it.

Parameters:

hObj handle of the object for which the visual is un-registered.

Note:

Before the client deletes a visual (e.g. when it runs out of the camera visual range) it must unregister
it from the core.

Once the visual is un-registered, Orbiter will no longer generate visual events via clbkVisEvent for it.
For vessel visuals, UnregisterVisObject will trigger a VESSEL2::clbkVisualDestroyed notification to
the vessel module, if it exists.

See also:

RegisterVisObject, clbkVisEvent

8.20.3.10 virtual int oapi::GraphicsClient::clbkVisEvent (OBJHANDLE h0Obj, VISHANDLE vis,
DWORD msg, UINT context) [virtuall]

Message callback for a visual object.

Parameters:

hObj handle of the object that created the message
vis client-supplied identifier for the visual
msg event identifier

context message context

Returns:

Function should return 1 if it processes the message, 0 otherwise.

Default action:

None, returns 0.

Note:

Messages are generated by Orbiter for objects that have been registered with RegisterVisObject by the
client, until they are un-registered with UnregisterVisObject.

Currently only vessel objects create visual messages.

For currently supported event types, see Identifiers for visual events.

The vis pointer passed to this function is the same as that provided by RegisterVisObject. It can be
used by the client to identify the visual object for which the message was created.

See also:

RegisterVisObject, UnregisterVisObject, Identifiers for visual events

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 232

8.20.3.11 virtual MESHHANDLE oapi::GraphicsClient::clbkGetMesh (VISHANDLE vis, UINT

idx) [inline, virtual]

Return a mesh handle for a visual, defined by its index.

Parameters:

vis visual identifier

idx mesh index (>=0)

Returns:

Mesh handle (client-specific)

Note:

Derived clients should return a handle that identifies a mesh for the visual (in client-specific format).
Orbiter calls this method in response to a VESSEL::GetMesh call by an vessel module.

8.20.3.12 virtual int oapi::GraphicsClient::clbkEditMeshGroup (DEVMESHHANDLE hMesh,
DWORD grpidx, GROUPEDITSPEC x ges) [inline, virtuall]

Mesh group editing interface for device-specific meshes.

Parameters:

hMesh device mesh handle
grpidx mesh group index (>=0)

ges mesh group modification specs

Returns:

Should return 0 on success, or error flags > 0.

Default action:

None, returns -1.

Note:

Clients should implement this method to allow the modification of individual groups in a device-
specific mesh. Modifications may include vertex values, index lists, texture and material indices, and
user flags.

8.20.3.13 virtual void oapi::GraphicsClient::clbkPreOpenPopup () [inline, virtual]

Popup window open notification.

Note:

This method is called just before a popup window (e.g. dialog box) is opened. It allows the client to
prepare for subsequent rendering of the window, if necessary.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 233

8.20.3.14 virtual ParticleStream+ oapi::GraphicsClient::clbkCreateParticleStream (PARTI-
CLESTREAMSPEC x* pss) [virtual]

Create a generic particle stream.

Parameters:

pss particle stream parameters

Returns:

Pointer to new particle stream.

Default action:

None, returns NULL. Derived classes should overload this method to return a ParticleStream-derived
class instance in order to support particle streams.

See also:

ParticleStream

8.20.3.15 virtual ParticleStream+ oapi::GraphicsClient::clbkCreateExhaustStream (PARTI-
CLESTREAMSPEC x pss, OBJHANDLE FhVessel, const double * Ivl, const VECTOR3 x ref, const
VECTOR3 «dir) [virtual]

Create a particle stream associated with a vessel.

Typically used for exhaust and plasma effects, but can also be used for other types of particles.

Parameters:

pss particle stream parameters

hVessel vessel handle

Ivl pointer to exhaust level control variable

ref pointer to stream source position (vessel frame) [m]

dir pointer to stream direction (vessel frame)

Returns:

Pointer to new particle stream

Default action:
None, returns NULL. Derived classes should overload this method to return a ParticleStream-derived
class instance in order to support exhaust streams.

Note:

The Ivl, ref and dir parameters may be modified by orbiter after the stream has been created, e.g. to
reflect changes in engine thrust level or gimballing.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 234

8.20.3.16 virtual ParticleStream+ oapi::GraphicsClient::clbkCreateExhaustStream (PARTI-
CLESTREAMSPEC x pss, OBJHANDLE hVessel, const double * Ivl, const VECTOR3 & ref, const
VECTOR3 & dir) [virtual]

Create a particle stream associated with a vessel.

Typically used for exhaust and plasma effects, but can also be used for other types of particles.

Parameters:

pss particle stream parameters

hVessel vessel handle

Ivl pointer to exhaust level control variable

ref pointer to stream source position (vessel frame) [m]

dir pointer to stream direction (vessel frame)

Returns:

Pointer to new particle stream

Default action:
None, returns NULL. Derived classes should overload this method to return a ParticleStream-derived
class instance in order to support exhaust streams.

Note:

The 1vl parameter may be modified by orbiter after the stream has been created, e.g. to reflect changes
in engine thrust level.
The ref and dir parameters are fixed in this version of the method.

8.20.3.17 virtual ParticleStream= oapi::GraphicsClient::clbkCreateReentryStream (PARTI-
CLESTREAMSPEC x pss, OBJHANDLE hVessel) [virtuall

Create a vessel particle stream for reentry heating effect.

Parameters:

pss particle stream parameters

hVessel vessel handle

Returns:

Pointer to new particle stream

Default action:

None, returns NULL. Derived classes should overload this method to return a ParticleStream-derived
class instance in order to support reentry streams.

8.20.3.18 virtual ScreenAnnotation:x oapi::GraphicsClient::clbkCreateAnnotation 0
[virtual]

Create an annotation object for displaying on-screen text.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 235

Returns:

Pointer to new screen annotation object.

Default action:

Dynamically allocates a ’ScreenAnnotation’ instance and returns a pointer to it.

8.20.3.19 virtual LRESULT oapi::GraphicsClient::RenderWndProc (HWND AWnd, UINT uMsg,
WPARAM wParam, LPARAM [Param) [virtual]

Render window message handler.

Derived classes should also call the base class method to allow default message processing.

Parameters:

hWnd render window handle

uMsg Windows message identifier
wParam WPARAM message parameter
IParam 1.PARAM message parameter

Returns:

The return value depends on the message being processed.

Note:

This is the standard Windows message handler for the render window.
This method currently intercepts only the WM_CLOSE and WM_DESTROY messages, and passes
everything else to the Orbiter core message handler.

8.20.3.20 virtual BOOL oapi::GraphicsClient::LaunchpadVideoWndProc (HWND /hWnd, UINT
uMsg, WPARAM wParam, LPARAM [Param) [virtuall]

Message handler for ’video’ tab in Orbiter Launchpad dialog.

Overload this method to display and retrieve video parameters using the Launchpad video tab. This method
acts like a standard Windows dialog message handler.

Parameters:

hWnd window handle for video tab
uMsg Windows message

wParam WPARAM message value
[Param 1.PARAM message value

Returns:

The return value depends on the message type and the action taken.

Default action:

Do nothing, return FALSE.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 236

8.20.3.21 VIDEODATA * oapi::GraphicsClient::GetVideoData () [inline]
Returns a pointer to the VideoData structure.

This structure contains the user selection for video parameters as stored in the Orbiter.cfg file. You can use
this structure to retrieve and present video options to the user, or ignore it and define your own method (e.g.
reading/writing to a separate config file)

Returns:

pointer to VIDEODATA structure containing default video settings

8.20.3.22 DWORD oapi::GraphicsClient::GetPopupList (const HWND xx hPopup Wnd) const

returns a list of popup windows owned by the render window.

Parameters:

— hPopupWnd on exit, points to a list of window handles

Returns:

Number of entries in the list.

Note:

The list returned by this method contains the handles of popup windows that are to be rendered on top
of the render viewport (e.g. dialog boxes).

A client can use this list if it requires a special method of displaying the popup windows. Typically,
this is the case in fullscreen render modes, where the dialog contents may need to be blitted manually
into the render surface.

8.20.3.23 virtual bool oapi::GraphicsClient::clbkFullscreenMode () const [pure virtuall

Fullscreen mode flag.

Returns:

true if the client is set up for running in fullscreen mode, false for windowed mode.

8.20.3.24 virtual void oapi::GraphicsClient::clbkGetViewportSize (DWORD x width, DWORD x
height) const [pure virtuall]

Returns the dimensions of the render viewport.

Parameters:

width render viewport width [pixel]
height render viewport height [pixel]

Note:

This function is called by orbiter after the render window or fullscreen renderer has been created (see
clbkCreateRenderWindow).

This should normally return the screen resolution in fullscreen mode, and the size of the render window
client area in windowed mode, clients can also return smaller values if they only use part of the screen
area for scene rendering.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 237

8.20.3.25 virtual bool oapi::GraphicsClient::clbkGetRenderParam (DWORD prm, DWORD x
value) const [pure virtuall

Returns a specific render parameter.

Parameters:

« prm parameter identifier (see

See also:

Render parameter identifiers)

Parameters:

— value value of the queried parameter

Returns:

true if the specified parameter is supported by the client, false if not.

8.20.3.26 const voidx oapi::GraphicsClient::GetConfigParam (DWORD paramtype) const

Returns a pointer to an Orbiter configuration parameter.

This function can be used to access various configuration parameters defined in the Orbiter core (e.g. user
selections in the Launchpad dialog box).

Parameters:

paramtype Parameter identifier (see Configuration parameter identifiers)

Returns:

Pointer to parameter

Note:
The pointer must be cast into the appropriate variable type. The variable types can be found in the

parameter type list (Configuration parameter identifiers).

Example:

double lightscale = *(doublex)GetConfigParam (CFGPRM_SURFACELIGHTBRT) ;

8.20.3.27 bool oapi::GraphicsClient::TexturePath (const char * fname, char * path) const
Return the full path for a texture file.

Returns the fully qualified path for texture file *fname’ in ’path’, relative to the orbiter root directory. The
search method conforms to the standard orbiter convention (first search under Textures2, then under Tex-
tures directory) Example: for fname="mypath\tex1.dds", this may return ".\ Textures2\mypath\tex1.dds"
or ".\Textures\mypath\tex1.dds" Return value is false if no file is found in either directory

Parameters:

Jfname texture file name (with path relative to an Orbiter texture directory)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 238

path string into which the full path is copied

Returns:

true if file was found, false otherwise.

8.20.3.28 SURFHANDLE oapi::GraphicsClient::GetVCHUDSurface (const VCHUDSPEC xx
hudspec) const

Returns the surface containing the virtual cockpit HUD.

Parameters:
— hudspec pointer to structure containing mesh and group index, and size parameters of VC HUD
object
Returns:

HUD surface handle, or NULL if not available

8.20.3.29 SURFHANDLE oapi::GraphicsClient::GetMFDSurface (int mfd) const

Returns the surface containing an MFD display.

Parameters:

mfd MFD identifier (0 <= mfd < MAXMFD)

Returns:

MED display surface handle, or NULL if not available

8.20.3.30 SURFHANDLE oapi::GraphicsClient::GetVCMFDSurface (int mfd, const VCMFD-
SPEC xx mfdspec) const

Returns the surface containing a virtual cockpit MFD display.

Parameters:

«— mfd MFD identifier (0 <= mfd < MAXMFD)
— mfdspec pointer to structure containing mesh and group index of the VC MFD display object

Returns:

MFD display surface handle, or NULL if not available

8.20.3.31 DWORD oapi::GraphicsClient::GetBaseTileList (OBJHANDLE #&Base, const Surftile-
Spec xx tile) const

Returns a list of high-res surface tile specifications for a base.

Parameters:

hBase surface base handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 239

tile pointer to a list of tile specifications, or NULL if none defined

Returns:

number of surface tiles defined for the base

8.20.3.32 void oapi::GraphicsClient::GetBaseStructures (OBJHANDLE hBase, MESHHANDLE
xx mesh_bs, DWORD x nmesh_bs, MESHHANDLE xx mesh_as, DWORD x nmesh_as) const

Returns meshes for generic base objects.

Parameters:
hBase surface base handle
mesh_bs mesh list for objects rendered before shadows (NULL if none)
nmesh_bs list length of mesh_bs list
mesh_as mesh list for objects rendered after shadows (NULL if none)

nmesh_as list length of mesh_as list

Note:

The lists contain mesh objects as well as generic object primitives (blocks, tanks, hangars, etc.)
All generic objects are separated into objects rendered before and after shadows, and compressed into
one mesh each, such that all objects with the same textures are merged into a single group.

8.20.3.33 void oapi::GraphicsClient::GetBaseShadowGeometry (OBJHANDLE hBase, MESH-
HANDLE x* mesh_sh, double ** elev, DWORD * nmesh_sh) const

Returns base meshes in a format that can be used for shadow projections.

Parameters:

hBase surface base handle
mesh_sh list of base object meshes
elev list of object elevation references [m]

nmesh_sh length of mesh_sh list

Note:

This method returns the mesh geometry (without textures and materials) for all mesh objects rendered
after shadows. Unlike GetBaseStructures(), this does not merge mesh groups from different objects,
so shadow projections can be calculated on a per-object basis (onto the local horizon plane).

the elev list is filled with elevation offsets of each object from the reference plane of the base.

8.20.3.34 virtual void oapi::GraphicsClient::clbkRender2DPanel (SURFHANDLE =« hSurf,
MESHHANDLE hMesh, MATRIX3 x T, bool transparent = false) [virtuall]

Render an instrument panel in cockpit view as a 2D billboard.

Parameters:

hSurf array of texture handles for the panel surface

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 240

hMesh billboard mesh handle
T transformation matrix for panel mesh vertices (2D)

transparent If true, panel should be rendered transparent

Default action:

None.

Note:

The texture index of each group in the mesh is interpreted as index into the hSurf array. Special indices
are TEXIDX_MFDO and above, which specify the surfaces representing the MFD displays. These are
obtained separately and don’t need to be present in the hSurf list.

The transparent flag is used when rendering the default "glass cockpit” if the user requested. "trans-
parent MFDs". The renderer can then use e.g. additive blending for rendering the panel.

8.20.3.35 virtual SURFHANDLE oapi::GraphicsClient::clbkCreateSurface (DWORD w, DWORD
h, SURFHANDLE hTemplate = NULL) [inline, virtuall]

Create an offscreen surface.

Surfaces are used for offscreen bitmap and texture manipulation, blitting and rendering. Derived classes
should create a device-specific surface, and return a cast to a generic Orbiter SURFHANDLE.

Parameters:

w surface width [pixels]
h surface height [pixels]

hTemplate surface format template

Returns:

pointer to surface, cast into a SURFHANDLE, or NULL to indicate failure.

Default action:

None, returns NULL.

Note:

If hTemplate is provided, this method should create the new surface with the same pixel format.

See also:

clbkCreateTexture, clbkReleaseSurface

8.20.3.36 virtual SURFHANDLE oapi::GraphicsClient::clbkCreateTexture (DWORD w, DWORD

h) [inline, virtual]

Create a texture for rendering.

Parameters:

w texture width

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 241

h texture height

Returns:

pointer to texture, returned as generic SURFHANDLE. NULL indicates failure.

Note:

This method is similar to clbkCreateSurface, but the returned surface handle must be usable as a texture
when rendering the scene. Clients which don’t differentiate between offscreen surfaces and textures
may use identical code for both functions.

Some clients may put restrictions on the texture format (e.g. require square size (w=h), and/or powers
of two (w=2"n). If the texture cannot be created with the requested size, this method should return
NULL.

See also:

clbkCreateSurface, clbkReleaseSurface

8.20.3.37 virtual SURFHANDLE oapi::GraphicsClient::clbkCreateSurface (HBITMAP hBmp)

[virtual]

Create an offscreen surface from a bitmap.

Parameters:

hBmp bitmap handle

Returns:

surface handle, or NULL to indicate failure

Default action:

Creates a surface of the same size as the bitmap, and uses clbkCopyBitmap to copy the bitmap over.

Note:
The reference counter for the new surface is set to 1.

See also:

clbkIncrSurfaceRef, clbkReleaseSurface

8.20.3.38 virtual void oapi::GraphicsClient::clbkIncrSurfaceRef (SURFHANDLE surf)

[inline, virtual]
Increment the reference counter of a surface.
Parameters:

surf surface handle

Default action:
None.
Note:

Derived classes should keep track on surface references, and overload this function to increment the
reference counter.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 242

8.20.3.39 virtual bool oapi::GraphicsClient::clbkReleaseSurface @ (SURFHANDLE surf)

[inline, virtual]

Decrement surface reference counter, release surface if counter reaches 0.

Parameters:

surf surface handle

Returns:

true on success

Default action:

None, returns false.

Note:
Derived classes should overload this function to decrement a surface reference counter and release the
surface if required.

See also:

clbkCreateSurface, clbkIncrSurfaceRef

8.20.3.40 virtual bool oapi::GraphicsClient::clbkGetSurfaceSize (SURFHANDLE surf, DWORD x
w,DWORD xh) [inline, virtual]

Return the width and height of a surface.

Parameters:

«— surf surface handle
— w surface width

— h surface height

Returns:

true if surface dimensions could be obtained.

Default action:

Sets w and h to 0 and returns false.

See also:

clbkCreateSurface

8.20.3.41 virtual bool oapi::GraphicsClient::clbkSetSurfaceColourKey (SURFHANDLE surf,
DWORD ckey) [inline, virtuall]

Set transparency colour key for a surface.

Parameters:

surf surface handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 243

ckey transparency colour key value

Default action:

None, returns false.

Note:

Derived classes should overload this method if the renderer supports colour key transparency for sur-
faces.

8.20.3.42 virtual DWORD oapi::GraphicsClient::clbkGetDeviceColour (BYTE r, BYTE g, BYTE

b) [inline, virtual]

Convert an RGB colour triplet into a device-specific colour value.

Parameters:

r red component
g green component

b blue component

Returns:

colour value

Note:
Derived classes should overload this method to convert RGB colour definitions into device-compatible
colour values, taking into account the colour depth of the render device etc.

Default action:

Packs the RGB values into a DWORD of the form 0OxXO0RRGGBB, with 8 bits per colour component.

See also:

clbkFillSurface

8.20.3.43 virtual bool oapi::GraphicsClient::clbkBlt SURFHANDLE zgt, DWORD f#gtx, DWORD
tgty, SURFHANDLE src, DWORD flag = 0) const [inline, virtual]

Copy one surface into an area of another one.

Parameters:
tgt target surface handle
tgtx left edge of target rectangle
tgty top edge of target rectangle
src source surface handle

flag Dblitting parameters (see notes)

Returns:

true on success, false if the blit cannot be performed.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 244

Default action:

None, returns false.

Note:

By convention, tgt==NULL is valid and refers to the primary render surface (e.g. for copying 2-D
overlay surfaces).
The following bit-flags are defined:

BLT_SRCCOLORKEY Use the colour key defined by the source
surface for transparency

BLT_TGTCOLORKEY Use the colour key defined by the target surface
for transparency

If a client doesn’t support some of the flags, it should quietly ignore it.

See also:

clbkBIt(SURFHANDLE,DWORD,DWORD,SURFHANDLE,DWORD,DWORD,DWORD,DWORD,DWORD)

8.20.3.44 virtual bool oapi::GraphicsClient::clbkBlt SURFHANDLE zgt, DWORD f#gtx, DWORD
tgty, SURFHANDLE src, DWORD srcx, DWORD srcy, DWORD w, DWORD h, DWORD flag = 0)

const [inline, virtual]

Copy a rectangle from one surface to another.

Parameters:

tgt target surfac handle

tgtx left edge of target rectangle
tgty top edge of target rectangle
src source surface handle

srex left edge of source rectangle
srcy top edge of source rectangle
w width of rectangle

h height of rectangle

flag Dblitting parameters (see notes)

Returns:

true on success, false if the blit cannot be performed.

Default action:

None, returns false.

Note:

By convention, tgt==NULL is valid and refers to the primary render surface (e.g. for copying 2-D
overlay surfaces).
The following bit-flags are defined:

BLT_SRCCOLORKEY Use the colour key defined by the source
surface for transparency

BLT_TGTCOLORKEY Use the colour key defined by the target surface
for transparency

If a client doesn’t support some of the flags, it should quietly ignore it.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 245

See also:

clbkBIt(SURFHANDLE,DWORD,DWORD,SURFHANDLE,DWORD)

8.20.3.45 virtual bool oapi::GraphicsClient::clbkScaleBlt (SURFHANDLE fgt, DWORD 1gtx,
DWORD f#gty, DWORD #gtw, DWORD tgth, SURFHANDLE src, DWORD srcx, DWORD srcy,
DWORD srcw, DWORD srch, DWORD flag = 0) const [inline, virtual]

Copy a rectangle from one surface to another, stretching or shrinking as required.

Parameters:

tgt target surface handle

tgtx left edge of target rectangle
tgty top edge of target rectangle
tgtw width of target rectangle
tgth height of target rectangle
src source surface handle

srex left edge of source rectangle
srey top edge of source rectangle
srcw width of source rectangle
srch height of source rectangle

flag Dblitting parameters

Returns:

true on success, fals if the blit cannot be performed.

Default action:

None, returns false.

Note:
By convention, tgt==NULL is valid and refers to the primary render surface (e.g. for copying 2-D
overlay surfaces).

See also:

clbkBIt(SURFHANDLE,DWORD,DWORD,SURFHANDLE,DWORD),
clbkBIt(SURFHANDLE,DWORD,DWORD,SURFHANDLE,DWORD,DWORD,DWORD,DWORD,DWORD)

8.20.3.46 virtual bool oapi::GraphicsClient::clbkFillSurface (SURFHANDLE surf, DWORD col)
const [inline, virtual]

Fill a surface with a uniform colour.

Parameters:

surf surface handle

col colour value

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 246

Returns:

true on success, false if the fill operation cannot be performed.

Default action:

None, returns false.

Note:

Parameter col is a device-dependent colour value (see clbkGetDeviceColour).

See also:

clbkFillSurface(SURFHANDLE,DWORD,DWORD,DWORD,DWORD,DWORD)

8.20.3.47 virtual bool oapi::GraphicsClient::clbkFillSurface (SURFHANDLE surf, DWORD fgtx,
DWORD #gty, DWORD w, DWORD £k, DWORD col) const [inline, virtual]

Fill an area in a surface with a uniform colour.

Parameters:

surf surface handle

tgtx left edge of target rectangle
tgty top edge of target rectangle
w width of rectangle

h height of rectangle

col colour value

Returns:

true on success, false if the fill operation cannot be performed.

Default action:

None, returns false.

Note:

Parameter col is a device-dependent colour value (see clbkGetDeviceColour).

See also:

clbkFillSurface(SURFHANDLE,DWORD)

8.20.3.48 virtual bool oapi::GraphicsClient::clbkCopyBitmap (SURFHANDLE pdds, HBITMAP
hbm, int x, int y, intdx, intdy) [virtual]

Copy a bitmap object into a surface.

Parameters:

pdds surface handle
hbm bitmap handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 247

x left edge of source bitmap area to be copied
y top edge of source bitmap area to be copied
dx width of source bitmap area to be copied

dy height of source bitmap area to be copied

Returns:

true on success, false if surface or bitmap handle are invalid.

Note:

The source bitmap area is stretched as required to fit the area of the target surface.

8.20.3.49 virtual Sketchpad+ oapi::GraphicsClient::clbkGetSketchpad (SURFHANDLE surf)
[inline, virtual]

Create a 2-D drawing object ("sketchpad") associated with a surface.

Parameters:

surf surface handle

Returns:

Pointer to drawing object.

Default action:

None, returns NULL.

Note:
Clients should overload this function to provide 2-D drawing support. This requires an implementation
of a class derived from Sketchpad which provides the drawing context and drawing primitives.

See also:

Sketchpad, clbkReleaseSketchpad

8.20.3.50 virtual void oapi::GraphicsClient::clbkReleaseSketchpad (Sketchpad * sp) [inline,
virtual]

Release a drawing object.

Parameters:

sp pointer to drawing object

Default action:

None.

See also:

Sketchpad, clbkGetSketchpad

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 248

8.20.3.51 virtual Fontx oapi::GraphicsClient::clbkCreateFont (int keight, bool prop, const char
* face, oapi::Font::Style style = capi: :Font::NORMAL, int orientation = 0) const [inline,
virtual]

Create a font resource for 2-D drawing.

Parameters:

height cell or character height [pixel]
prop proportional/fixed width flag
Jface font face name

style font decoration style

orientation text orientation [1/10 deg]

Returns:

Pointer to font resource

Default action:

None, returns NULL.

Note:

For a description of the parameters, see Font constructor oapi::Font::Font

See also:

clbkReleaseFont, oapi::Font

8.20.3.52 virtual void oapi::GraphicsClient::clbkReleaseFont (Font x fonf) const [inline,
virtual]

De-allocate a font resource.

Parameters:

Jfont pointer to font resource

Default action:

None.

See also:

clbkCreateFont, oapi::Font

8.20.3.53 virtual Penx oapi::GraphicsClient::clbkCreatePen (int style, int width, DWORD col) const
[inline, virtual]

Create a pen resource for 2-D drawing.

Parameters:

style line style (O=invisible, 1=solid, 2=dashed)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 249

width line width [pixel]
col line colour (format: 0OXBBGGRR)

Returns:

Pointer to pen resource

Default action:

None, returns NULL.

See also:

clbkReleasePen, oapi::Pen

8.20.3.54 virtual void oapi::GraphicsClient::cIbkReleasePen (Pen * pen) const [inline,
virtual]

De-allocate a pen resource.

Parameters:

pen pointer to pen resource

Default action:

None.

See also:

clbkCreatePen, oapi::Pen

8.20.3.55 virtual Brushx oapi::GraphicsClient::clbkCreateBrush (DWORD col) const [inline,

virtual]

Create a brush resource for 2-D drawing.

Parameters:

col line colour (format: 0OxXBBGGRR)

Returns:

Pointer to brush resource

Default action:

None, returns NULL.

See also:

clbkReleaseBrush, oapi::Brush

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 250

8.20.3.56 virtual void oapi::GraphicsClient::clbkReleaseBrush (Brush x brush) const [inline,
virtuall]

De-allocate a brush resource.

Parameters:

brush pointer to brush resource

Default action:

None.

See also:

clbkCreateBrush, oapi::Brush

8.20.3.57 virtual HDC oapi::GraphicsClient::clbkGetSurfaceDC (SURFHANDLE surf)

[inline, virtual]

Return a Windows graphics device interface handle for a surface.

Parameters:

surf surface handle

Returns:

GDI handle, or NULL on failure

Default action:

None, returns NULL.

Note:

Clients which can obtain a Windows GDI handle for a surface should overload this method.

Todo

This method should be moved into the GDIClient class

8.20.3.58 virtual void oapi::GraphicsClient::clbkReleaseSurfaceDC (SURFHANDLE surf, HDC
hDC) [inline, virtual]

Release a Windows graphics device interface.

Parameters:

surf surface handle
hDC GDI handle

Default action:

None.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 251

Note:

Clients which can obtain a Windows GDI handle for a surface should overload this method to release
an existing GDI.

Todo

This method should be moved into the GDIClient class

8.20.3.59 virtual bool oapi::GraphicsClient::clbkUseLaunchpadVideoTab () const [inline,
protected, virtual]

Launchpad video tab indicator.

Indicate if the the default video tab in the Orbiter launchpad dialog is to be used for obtaining user video
preferences. If a derived class returns false here, the video tab is not shown.

Returns:

true if the module wants to use the video tab in the launchpad dialog, false otherwise.

Default action:

Return true.

8.20.3.60 virtual HWND oapi::GraphicsClient::clbkCreateRenderWindow () [protected,
virtual]

Simulation session start notification.

Called at the beginning of a simulation session to allow the client to create the 3-D rendering window (or
to switch into fullscreen mode).

Returns:

Should return window handle of the rendering window.

Default action:

For windowed mode, opens a window of the size specified by the VideoData structure (for fullscreen
mode, opens a small dummy window) and returns the window handle.

Note:

For windowed modes, the viewW and viewH parameters should return the window client area size.
For fullscreen mode, they should contain the screen resolution.

Derived classes should perform any required per-session initialisation of the 3D render environment
here.

8.20.3.61 virtual void oapi::GraphicsClient::clbkPostCreation () [inline, protected,
virtual]

Simulation startup finalisation.

Called at the beginning of a simulation session after the scenarion has been parsed and the logical object
have been created.

Default action:

None

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 252

8.20.3.62 virtual void oapi::GraphicsClient::clbkCloseSession (bool fastclose) [inline,
protected, virtual]

End of simulation session notification.

Called before the end of a simulation session. At the point of call, logical objects still exist (OBJHANDLESs
valid), and external modules are still loaded.

Parameters:

fastclose Indicates a "fast shutdown" request (see notes)

Default action:

None.

Note:

Derived clients can use this function to perform cleanup operations for which the simulation objects
are still required.

If fastclose == true, the user has selected one of the fast shutdown options (terminate Orbiter, or
respawn Orbiter process). In this case, the current process will terminate, and the graphics client can
skip object cleanup and deallocation in order to speed up the closedown process.

See also:

clbkDestroyRenderWindow

8.20.3.63 virtual void oapi::GraphicsClient::clbkDestroyRenderWindow (bool fastclose)
[protected, virtual]

Render window closure notification.

Called at the end of a simulation session to allow the client to close the 3-D rendering window (or to switch
out of fullscreen mode) and clean up the session environment. At the point of call, all logical simulation
objects have been destroyed, and object modules have been unloaded. This method should not access
any OBJHANDLE or VESSEL objects any more. For closedown operations that require access to the
simulation objects, use clbkCloseSession instead.

Parameters:

fastclose Indicates a "fast shutdown" request (see notes)

Default action:

None.

Note:

Derived classes should perform any required cleanup of the 3D render environment here.

The user may change the video parameters before starting a new simulation session. Therefore, device-
specific options should be destroyed and re-created at the start of the next session.

If fastclose == true, the user has selected one of the fast shutdown options (terminate Orbiter, or
respawn Orbiter process). In this case, the current process will terminate, and the graphics client can
skip object cleanup and deallocation in order to speed up the closedown process.

See also:

clbkCloseSession

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 253

8.20.3.64 virtual void oapi::GraphicsClient::clbkUpdate (bool running) [inline,
protected, virtual]

Per-frame update notification.

Called once per frame, after the logical world state has been updated, but before clbkRenderScene(), to
allow the client to perform any logical state updates.

Parameters:

running true if simulation is running, false if paused.

Default action:

None.

Note:

Unlike clbkPreStep and clbkPostStep, this method is also called while the simulation is paused.

8.20.3.65 virtual void oapi::GraphicsClient::clbkRenderScene () [protected, pure
virtuall]

Per-frame render notification.

Called once per frame, after the logical world state has been updated, to allow the client to render the
current scene.

Note:

This method is also called continuously while the simulation is paused, to allow camera panning
(although in that case the logical world state won’t change between frames).

After the 3D scene has been rendered, this function should call Render2DOverlay to initiate rendering
of 2D elements (2D instrument panel, HUD, etc.)

8.20.3.66 virtual bool oapi::GraphicsClient::clbkDisplayFrame () [inline, protected,
virtual]

Display a scene on screen after rendering it.

Called after clbkRenderScene to allow the client to display the rendered scene (e.g. by page-flipping, or
blitting from background to primary frame buffer. This method can also be used by the client to display
any top-level 2-D overlays (e.g. dialogs) on the primary frame buffer.

Returns:

Should return true on successful operation, false on failure or if no operation was performed.

Default action:

None, returns false.

8.20.3.67 void oapi::GraphicsClient::Render2DOverlay () [protected]
Notifies Orbiter to to initiate rendering of the 2D scene overlay.

The 2D overlay is used to render 2D instrument panels, HUD, the info boxes at the top left and right
of the screen, etc. This function should typically be called at the end of clbkRenderScene, after the 3D

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 254

scene has been rendered, but before the rendering environment is released. During the execution of this
function, Orbiter will call the clbkRender2DPanel function several times to allow the client to build up the
2D layer.

Note:

Orbiter will not acquire a Sketchpad environment while executing this function, because the graphics
driver may not allow to lock surfaces for drawing while in render mode. If a Sketchpad environment
is required to draw on top of the render window (for example for displaying specific HUD elements),
it is acquired after clbkRenderScene returns.

See also:

clbkRenderScene, clbkRender2DPanel

8.20.3.68 virtual void oapi::GraphicsClient::clbkStoreMeshPersistent (MESHHANDLE hMesh,
const char x fname) [inline, protected, virtual]

Store a persistent mesh template.

Called when a plugin loads a mesh with oapiLoadMeshGlobal, to allow the client to store a copy of the
mesh in client-specific format. Whenever the mesh is required later, the client can create an instance as a
copy of the template, rather than creating it by converting from Orbiter’s mesh format.

Parameters:

hMesh mesh handle

Jfname mesh file name

Default action:

None.

Note:

Use oapiMeshGroup to to obtain mesh data and convert them to a suitable format.

the mesh templates loaded with oapiLoadMeshGlobal are shared between all vessel instances and
should never be edited. Vessels should make individual copies of the mesh before modifying them
(e.g. for animations)

The file name is provide to allow the client to parse the mesh directly from file, rather than copying it
from the hMesh object, or to use an alternative mesh file.

The file name contains a path relative to Orbiter’s main mesh directory.

8.20.3.69 HWND oapi::GraphicsClient::LaunchpadVideoTab () const [inline, protected]

Returns the window handle of the ’video’ tab of the Orbiter Launchpad dialog.
If clbkUseLanuchpadVideoTab() is overloaded to return false, this function will return NULL.

8.20.3.70 DWORD oapi::GraphicsClient::LoadStars (DWORD r, StarRec * rec)
Load star data from Orbiter’s data base file.

Load up to ’n’ data records from the default data base (in decreasing order of apparent magnitude).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.20 oapi::GraphicsClient Class Reference 255

Parameters:

n Requested number of stars

rec Pointer to an array receiving the data.

Returns:

The actual number of loaded stars

Note:

rec must be allocated to size >=n on call.

8.20.3.71 DWORD oapi::GraphicsClient::LoadConstellationLines (DWORD r, ConstRec * rec)
Load constellation line data from Orbiter’s data base file.

Load up to ’n’ constellation lines from the default constellation data base.

Parameters:

n Requested number of lines

rec Pointer to an array receiving the data.

Returns:

The actual number of lines loaded.

Note:

rec must be allocated to size >=n on call.

8.20.3.72 DWORD oapi::GraphicsClient::GetCelestialMarkers (const LABELLIST xx cm_list)
const

Returns an array of celestial marker lists.

Parameters:

cm_list array of marker lists

Returns:

number of lists in the array

See also:

LABELLIST

8.20.3.73 DWORD oapi::GraphicsClient::GetSurfaceMarkers (OBJHANDLE hObj, const LA-
BELLIST xx sm_list) const

Returns an array of surface marker lists for a planet.

Parameters:

hObj planet handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.21 oapi::GraphicsClient:: LABELLIST Struct Reference

256

sm_list array of marker lists

Returns:

number of lists in the array

Note:

hObj must refer to a planet or moon. Other objects are not supported.

See also:

LABELLIST

The documentation for this class was generated from the following file:

* Orbitersdk/include/GraphicsAPLh

8.21 oapi::GraphicsClient:: LABELLIST Struct Reference

#include <GraphicsAPI.h>

8.21.1 Detailed Description

Label list description for celestial and surface markers.

Public Attributes

e char name [64]

list name

* LABELSPEC = list

marker array

* int length

length of the marker array

e int colour

marker colour index (0-5)

* int shape

marker shape index (0-4)

¢ float size

marker size factor

e float distfac

marker distance cutout factor

« DWORD flag

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.22 oapi::GraphicsClient:: VIDEODATA Struct Reference 257

reserved

* bool active
active list flag

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/GraphicsAPLh

8.22 oapi::GraphicsClient:: VIDEODATA Struct Reference

#include <GraphicsAPI.h>

8.22.1 Detailed Description

Structure containing default video options, as stored in Orbiter.cfg.

Public Attributes

bool fullscreen

fullscreen mode flag

¢ bool forceenum

enforce device enumeration flag

* bool trystencil
stencil buffer flag

* bool novsync

no vsync flag

* bool pageflip
allow page flipping in fullscreen

¢ int deviceidx

video device index

¢ int modeidx

video mode index

e int winw

window width

¢ int winh

window height

The documentation for this struct was generated from the following file:

* Orbitersdk/include/GraphicsAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.23 GraphMFD Class Reference 258

8.23 GraphMFD Class Reference

#include <MFDAPI.h>

Inheritance diagram for GraphMFD:

Collaboration diagram for GraphMFD:

8.23.1 Detailed Description

This class is derived from MFD and provides a template for MFD modes containing 2D graphs.

This class is derived from MFD and provides a template for MFD modes containing 2D graphs. An
example is the ascent profile recorder in the samples\CustomMFD folder.
Public Member Functions

* GraphMFD (DWORD w, DWORD h, VESSEL xvessel)
Constructor. Creates a new GraphMFD.

¢ int AddGraph (void)
Adds a new graph to the MFD.

* void AddPlot (int g, float *absc, float *xdata, int ndata, int col, int xofs=0)
Adds a plot to an existing graph.

* void SetRange (int g, int axis, float rmin, float rmax)

Sets a fixed range for the x or y axis of a graph.

* void SetAutoRange (int g, int axis, int p=-1)

Allows the graph to set its range automatically according to the range of the plots.

¢ void SetAutoTicks (int g, int axis)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.23 GraphMFD Class Reference 259

Calculates tick intervals for a given graph and axis.

¢ void SetAxisTitle (int g, int axis, char xtitle)

Sets the title for a given graph and axis.

¢ void Plot (HDC hDC, int g, int hO, int h1, const char xtitle=0)
Displays a graph.

* void FindRange (float *d, int ndata, float &dmin, float &dmax) const

Determines the range of an array of data.

Protected Attributes
¢ int ngraph

e struct GraphMFD::GRAPH * graph

8.23.2 Constructor & Destructor Documentation

8.23.2.1 GraphMFD::GraphMFD (DWORD w, DWORD &, VESSEL x vessel)

Constructor. Creates a new GraphMFD.

Parameters:

w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD

8.23.3 Member Function Documentation

8.23.3.1 int GraphMFD::AddGraph (void)
Adds a new graph to the MFD.

Returns:

graph identifier

Note:

This function allocates data for a new graph. To display plots in the new graph, one or more calls to
AddPlot are required.

8.23.3.2 void GraphMFD::AddPlot (int g, float « absc, float * data, int ndata, int col, int * ofs = 0)

Adds a plot to an existing graph.

Parameters:

g graph identifier

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.23 GraphMFD Class Reference 260

absc pointer to array containing the abscissa (x-axis) values.
data pointer to array containing the data (y-axis) values.
ndata number of data points

col plot colour index

ofs pointer to data offset (optional)

Note:

Data arrays are not copied, so they should not be deleted after the call to AddPlot().

col is used as an index to select a pen for the plot using the SelectDefaultPen function. Valid range is
the same as for SelectDefaultPen().

If defined, xofs is the index of the first plot value in the data array. The plot is drawn using the points
xofs to ndata-1, followed by points O to *ofs-1. This allows to define continuously updated plots
without having to copy blocks of data within the arrays.

8.23.3.3 void GraphMFD::SetRange (int g, int axis, float rmin, float rmax)

Sets a fixed range for the x or y axis of a graph.

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
rmin minimum value
rmax maximum value
Note:

The range applies to all plots in the graph.

8.23.3.4 void GraphMFD::SetAutoRange (int g, int axis, intp = -1)

Allows the graph to set its range automatically according to the range of the plots.

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
p plot identifier (-1=all)
Note:

If p>=0, then p specifies the plot used for determining the graph range. If p = -1, then all of the graph’s
plots are used to determine the range.

8.23.3.5 void GraphMFD::SetAutoTicks (int g, int axis)

Calculates tick intervals for a given graph and axis.

Parameters:

g graph identifier

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.23 GraphMFD Class Reference 261

axis axis identifier (0=x, 1=y)

Note:

This function is called from within SetRange and normally doesn’t need to be called explicitly by
derived classes.

8.23.3.6 void GraphMFD::SetAxisTitle (int g, int axis, char x title)

Sets the title for a given graph and axis.

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
title axis title

Note:

The MFD may append an extension of the form "x <scale>" to the title, where <scale> is a scaling
factor applied to the tick labels of the axis. It is therefore a good idea to finish the title with the units
applicable to the data of this axis, so that for example a title "Altitude: km" may become "Altitude:
km x 1000".

8.23.3.7 void GraphMFD::Plot (HDC kDC, int g, int k0, int h1, const char x title = 0)
Displays a graph.

Parameters:

hDC Windows device context
g graph identifier
h0 upper boundary of plot area (pixel)
h1 lower boundary of plot area (pixel)
title graph title

Note:

This function should be called from Update to paint the graph(s) into the provided device context.

8.23.3.8 void GraphMFD::FindRange (float * d, int ndata, float & dmin, float & dmax) const

Determines the range of an array of data.

Parameters:

d data array
ndata number of data
dmin minimum value on return

dmax maximum value on return

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/MFDAPI.h

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.24 GROUPEDITSPEC Struct Reference 262

8.24 GROUPEDITSPEC Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for GROUPEDITSPEC:

8.24.1 Detailed Description
Structure used by oapiEditMeshGroup to define the group elements to be replaced.

Note:

Only the group elements specified in the flags entry will be replaced or modified. The elements that
are to remain unchanged can be left undefined in the GROUPEDITSPEC structure. For example, if
only GRPEDIT_VTXCRDX is specified, only the ’x’ fields in the Vtx array need to be assigned.

to replace individual vertices in the group, the nVtx entry should contain the number of vertices to
be replaced, the vldx array should contain the indices (>= 0) of the vertices to be replaced, and Vtx
should contain the new vertex values of those vertices. If vidx==NULL, vertices are replaced in
sequence from the beginning of the group’s vertex list. nVtx must be less or equal the number of
vertices in the group.

See also:

oapiEditMeshGroup, Mesh group editing flags

Public Attributes

* DWORD flags
flags (see Mesh group editing flags)

DWORD UsrFlag
Replacement for group UsrFlag entry.

NTVERTEX * Vix

Replacement for group vertices.

* DWORD nVitx

Number of vertices to be replaced.

WORD x vIdx

Index list for vertices to be replaced.

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.25 HELPCONTEXT Struct Reference

263

8.25 HELPCONTEXT Struct Reference

#include <OrbiterAPI.h>

8.25.1 Detailed Description
Context information for an Orbiter ingame help page.

See also:

oapiOpenHelp

Public Attributes

e char * helpfile
e char x topic

e char * toc

e char * index

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.26 HUDPARAM Union Reference

#include <OrbiterAPI.h>

8.26.1 Detailed Description
Mode-specific parameters for HUD mode settings.

See also:

oapiSetHUDMode(int,const HUDPARAM3)

Public Attributes

e struct {
OBJHANDLE hRef
orbit HUD reference object (NULL for auto)
} HUDorbit

e struct {
DWORD Navldx
docking HUD nav receiver index (>= 0)
} HUDdocking

The documentation for this union was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.27 oapi:: IVECTOR?2 Union Reference 264

8.27 oapi::IVECTOR?2 Union Reference

#include <DrawAPI.h>

8.27.1 Detailed Description
Integer-valued 2-D vector type.

Note:

This structure is designed to be compatible with the Windows POINT type.

Public Attributes

* long data [2]

vector data array

e struct {
long x
vector x coordinate

long y
vectory coordinate

};

The documentation for this union was generated from the following file:

¢ Orbitersdk/include/DrawAPI.h

8.28 Launchpadltem Class Reference

#include <OrbiterAPI.h>

8.28.1 Detailed Description

Base class to define launchpad items.

LaunchpadItem is the base class for objects that can be inserted into the parameter list of the Extra tab of
the Orbiter Launchpad dialog. The Extra tab provides a mechanism for plugin modules to allow users to
set global parameters specific to an addon. Launchpadltem is notified whenever the user selects the item
from the list, and when parameters need to be read from or written to disk.

See also:

oapiRegisterLaunchpadltem, oapiUnregisterLaunchpadltem

Public Member Functions

* Launchpadltem ()

Constructor. Creates a new launchpad item.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.28 LaunchpadItem Class Reference 265

e virtual ~Launchpadltem ()

Destructor. Destroys the launchpad item.

e virtual char * Name ()

Derived classes should return a pointer to the string to appear in the Launchpad "Extra" list.

e virtual char * Description ()

Derived classes should return a pointer to the the string containing a description of the item. The description
is shown next to the Launchpad list whenever the item is selected.

* virtual bool OpenDialog (HINSTANCE hInst, HWND hLaunchpad, int resId, DLGPROC pDlg)

Opens a dialog box associated with the launchpad item.

* virtual bool clbkOpen (HWND hLaunchpad)

This method is called whenever the user opens the item by double-clicking on the list or clicking the "Edit"
button below the list.

* virtual int clbkWriteConfig ()

This method is called whenever the item should write its current state to a file.

Public Attributes

* LAUNCHPADITEM_HANDLE hltem

8.28.2 Member Function Documentation

8.28.2.1 virtual charx Launchpadltem::Name () [virtual]

Derived classes should return a pointer to the string to appear in the Launchpad "Extra" list.

Returns:

Pointer to the item label in the list.
Default action: Returns NULL (no entry in the list).

8.28.2.2 virtual charx Launchpadltem::Description () [virtual]
Derived classes should return a pointer to the the string containing a description of the item. The description
is shown next to the Launchpad list whenever the item is selected.
Returns:
Pointer to the descriptive string, or NULL if there is none.
Default action: Returns NULL (no description).
Note:

Line breaks can be inserted into the description with a carriage return/newline sequence (\r\n).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.28 LaunchpadItem Class Reference 266

8.28.2.3 virtual bool Launchpadltem::OpenDialog (HINSTANCE hlnst, HWND hLaunchpad, int
resld, DLGPROC pDIg) [virtual]

Opens a dialog box associated with the launchpad item.

Parameters:

hInst module instance handle
hLaunchpad launchpad window handle
resld integer resource ID of the dialog box

pDlg dialog box message handler

Returns:

Currently this function always returns frue.

Note:

This function is usually called in the body of Launchpadltem::clbkOpen().

It is an alternative to the standard Windows DialogBox function. It has the advantage that a pointer to
the Launchpadltem instance is passed as 1Param to the message handler with the WM_INITDIALOG
message. In all subsequent calls to the handler, the Launchpadltem instance pointer can be obtained
with a call to GetWindowLong (hWnd, DWL_USER), where hWnd is the dialog box handle passed to
the message handler.

8.28.2.4 virtual bool Launchpadltem::clbkOpen (HWND hkLaunchpad) [virtual]

This method is called whenever the user opens the item by double-clicking on the list or clicking the "Edit"
button below the list.

Parameters:

hLaunchpad The window handle of the Launchpad dialog

Returns:

Currently ignored. Should be frue if the derived class processes this callback function.
Default action: Nothing; returns false.

Note:

The derived class can use this function to open a dialog box or some other means of allowing the user
to set addon-specific parameters.

8.28.2.5 virtual int LaunchpadItem::clbkWriteConfig () [virtual]

This method is called whenever the item should write its current state to a file.

Returns:

Currently ignored. Should be 0.
Default action: Nothing; returns 0.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29 LightEmitter Class Reference 267

Note:

This function is called before a simulation session is launched, before Orbiter shuts down, and before
the module is deactivated. It allows the module to write its current state to a file, so it can re-load its
settings the next time Orbiter is launched.

You can either use default C or C++ methods to open a file for output, or you can use the oapiOpenFile()
method.

Modules should never write to the global Orbiter.cfg configuration file. Any addons that are not ac-
tive when Orbiter overwrites Orbiter.cfg will lose their settings, since their clbkWriteConfig() method
cannot be called.

The best place to read the settings stored during a previous session is in the overloaded Launchpadltem
constructor. Use oapiOpenFile or another file access method compatible with the way the file was
written. The parameter settings should then be stored in class member variables, and modified by user
interaction.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.29 LightEmitter Class Reference

#include <OrbiterAPI.h>

Inheritance diagram for LightEmitter:

Collaboration diagram for LightEmitter:

8.29.1 Detailed Description

Base class for defining a light source that can illuminate other objects.

Public Types

e enum TYPE { LT_NONE, LT_POINT, LT_SPOT, LT_DIRECTIONAL }

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29

LightEmitter Class Reference

268

Public Member Functions

LightEmitter ()

Create a light source with default parameters.

LightEmitter (COLOURA4 diffuse, COLOUR4 specular, COLOUR4 ambient)

Create a light source with specific colour parameters.

TYPE GetType () const
Returns the light source type.

const COLOUR4 & GetDiffuseColour () const
const COLOUR4 & GetSpecularColour () const
const COLOUR4 & GetAmbientColour () const
void Activate (bool act)

Activate or deactivate the light source.

bool IsActive () const

Returns activation status of light source.

void SetPosition (const VECTOR3 &p)

Set light source position.

VECTOR3 GetPosition () const

Returns the current source position.

void SetPositionRef (const VECTOR3 xp)

Set the reference pointer to the light source position.

const VECTOR3 * GetPositionRef () const

Returns a pointer to the position reference variable.

void ShiftExplicitPosition (const VECTOR3 &ofs)

Adds an offset to the explicit position definition of the source.

void SetDirection (const VECTOR3 &d)

Set light source direction.

VECTOR3 GetDirection () const

Returns the current source direction.

void SetDirectionRef (const VECTOR3 *d)

Set the reference pointer to the light source direction.

const VECTOR3 * GetDirectionRef () const

Returns a pointer to the direction reference variable.

void SetIntensity (double in)

double GetlIntensity () const

void SetIntensityRef (double xpin)
const double * GetIntensityRef () const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29 LightEmitter Class Reference 269

Protected Member Functions

¢ OBJHANDLE Attach (OBJHANDLE hObj)
¢ OBJHANDLE Detach ()

Protected Attributes

* TYPE Itype

¢ OBJHANDLE hRef

* bool active

¢ COLOUR4 col_diff

* COLOUR4 col_spec

¢ COLOUR4 col_ambi
¢ const double * intens
¢ double lintens

* const VECTOR3 x* pos
¢ const VECTOR3 x dir
¢ VECTORS3 lpos

¢ VECTOR3 Idir

8.29.2 Constructor & Destructor Documentation

8.29.2.1 LightEmitter::LightEmitter ()

Create a light source with default parameters.

Note:

Creates a light source with white spectrum for diffuse, specular and emissive colour components.
Intensity is set to 1, position (for point source objects) is set to (0,0,0) and direction (for spot and
directional lights) is set to (0,0,1). To change these, use SetPosition, SetPositionRef, SetDirection,
SetDirectionRef, SetIntensity, SetIntensityRef

8.29.2.2 LightEmitter::LightEmitter (COLOUR4 diffuse, COLOUR4 specular, COLOUR4 ambi-
ent)

Create a light source with specific colour parameters.

Parameters:
diffuse light source’s contribution to lit objects’ diffuse colour component
specular light source’s contribution to lit objects’ specular colour component

ambient light source’s contribution to lit objects’ ambient colour component

Note:

Intensity is set to 1, position (for point source objects) is set to (0,0,0) and direction (for spot and
directional lights) is set to (0,0,1). To change these, use SetPosition, SetPositionRef, Setlntensity,
SetIntensityRef

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29 LightEmitter Class Reference 270

8.29.3 Member Function Documentation

8.29.3.1 void LightEmitter::Activate (bool act)

Activate or deactivate the light source.

Parameters:

act if true, activates the light source. Otherwise, deactivates the light source

See also:

IsActive

8.29.3.2 bool LightEmitter::IsActive () const

Returns activation status of light source.

Returns:

true if source is active, false otherwise.

See also:

Activate

8.29.3.3 void LightEmitter::SetPosition (const VECTOR3 & p)

Set light source position.

Parameters:

p new position [m] (in object or global coordinates)

Note:

The source position is only relevant for point and spot lights. It is ignored for directional lights

If the source is attached to an object (see Attach) the position is interpreted in the local object coordi-
nates. Otherwise, the position is taken to be in global coordinates.

After a displacement of the vessel’s centre of mass (see VESSEL::ShiftCG), all light sources that
define their position explicitly (via SetPosition) are updated automatically. Light sources with implicit
position definition (via SetPositionRef) must update their positions themselves.

See also:

GetPosition, SetPositionRef, GetPositionRef

8.29.3.4 VECTORS3 LightEmitter::GetPosition () const [inline]

Returns the current source position.

Returns:

Current source position [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29 LightEmitter Class Reference 271

Note:
The source position is only relevant for point and spot lights. It is ignored for directional lights
If the source is attached to an object (see Attach) the returned vector is the source position in local
object coordinates. Otherwise, the returned vector is the global source position.

See also:

SetPosition, SetPositionRef, GetPositionRef

8.29.3.5 void LightEmitter::SetPositionRef (const VECTORS3 x p)

Set the reference pointer to the light source position.

Parameters:

p pointer to vector defining the source position

Note:

This method links the position of the light source to an externally defined vector. By modifying the
vector elements, the light source can be re-positioned instantly.

The vector variable pointed to by p must remain valid for the lifetime of the light source.

The source position is only relevant for point and spot lights. It is ignored for directional lights

See also:

SetPosition, GetPosition, GetPositionRef

8.29.3.6 const VECTOR3x LightEmitter::GetPositionRef () const

Returns a pointer to the position reference variable.

Returns:

Pointer to the variable defining the light source position

Note:

If the position is defined explicitly (see SetPosition), this method simply returns a pointer to the lpos
member variable. Otherwise, is returns the pointer specified in SetPositionRef.

See also:

SetPosition, SetPositionRef, GetPosition

8.29.3.7 void LightEmitter::ShiftExplicitPosition (const VECTOR3 & ofs)

Adds an offset to the explicit position definition of the source.

Parameters:

ofs offset vector in local vessel coordinates

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.29 LightEmitter Class Reference 272

Note:

This method has only an effect for light sources whose positions are defined explicitly (via SetPo-
sition). If the source position is defined implicitly (via SetPositionRef), this method has no effect.
Modules that define their light source positions via implicit references must keep the positions up to
date themselves (e.g. reacting to shifts in the centre of gravity).

See also:

SetPosition, SetPositionRef, VESSEL::ShiftCG

8.29.3.8 void LightEmitter::SetDirection (const VECTOR3 & d)

Set light source direction.

Parameters:

p new direction (in object or global coordinates)

Note:

The vector argument should be normalised to length 1.

The source direction is only relevant for spot and directional lights. It is ignored for point lights.

If the source is attached to an object (see Attach) the direction is interpreted in the local object coordi-
nates. Otherwise, the direction is taken to be in global coordinates.

See also:

GetDirection, SetDirectionRef, GetDirectionRef

8.29.3.9 VECTORS3 LightEmitter::GetDirection () const

Returns the current source direction.

Returns:

Current source direction.

Note:

The source direction is only relevant for spot and directional lights. It is ignored for point lights.
If the source is attached to an object (see Attach) the returned vector is the source direction in local
object coordinates. Otherwise, the returned vector is the global source direction.

See also:

SetDirection, SetDirectionRef, GetDirectionRef

8.29.3.10 void LightEmitter::SetDirectionRef (const VECTORS x d)

Set the reference pointer to the light source direction.

Parameters:

d pointer to vector defining the source direction

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.30 LISTENTRY Struct Reference 273

Note:

This method links the direction of the light source to an externally defined vector. By modifying the
vector elements, the light source can be re-directed instantly.

The vector variable pointed to by d must remain valid for the lifetime of the light source.

The source direction is only relevant for spot and directional lights. It is ignored for point lights

See also:

SetDirection, GetDirection, GetDirectionRef

8.29.3.11 const VECTOR3x« LightEmitter::GetDirectionRef () const

Returns a pointer to the direction reference variable.

Returns:

Pointer to the variable defining the light source direction

Note:

If the direction is defined explicitly (see SetDirection), this method simply returns a pointer to the 1dir
member variable. Otherwise, is returns the pointer specified in SetDirectionRef.

See also:

SetDirection, SetDirectionRef, GetDirection

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.30 LISTENTRY Struct Reference

#include <OrbiterAPI.h>

8.30.1 Detailed Description

Entry specification for selection list entry.

Public Attributes

e char name [64]

entry string

* DWORD flag
entry flags

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.31 MATERIAL Struct Reference

274

8.31 MATERIAL Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for MATERIAL.:

8.31.1 Detailed Description

material definition

Public Attributes

COLOUR4 diffuse

diffuse component

COLOUR4 ambient

ambient component

COLOUR4 specular

specular component

COLOUR4 emissive

emissive component

* float power

specular power

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.32 MATRIX3 Union Reference

#include <OrbiterAPI.h>

8.32.1 Detailed Description

3x3-element matrix

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.33 MESHGROUP Struct Reference 275

Public Attributes

e double data [9]

array data interface (row-sorted)

e struct {
double m11
double m12
double m13
double m21
double m22
double m23
double m31
double m32
double m33

named data interface

The documentation for this union was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.33 MESHGROUP Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for MESHGROUP:

8.33.1 Detailed Description

Defines a mesh group (subset of a mesh).

A mesh group contains a vertex list, an index list, a material and texture index, and a set of flags.

Public Attributes

* NTVERTEX * Vix

vertex list

* WORD = Idx

index list

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.34 MESHGROUP_TRANSFORM Struct Reference 276

e DWORD nVtx

vertex count

DWORD nldx

index count

* DWORD Mtrlldx

material index (>= 1, O=none)

DWORD TexIdx

texture index (>= 1, O=none)

* DWORD UsrFlag
user-defined flag

WORD zBias

z bias

WORD Flags

internal flags

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.34 MESHGROUP_TRANSFORM Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for MESHGROUP_TRANSFORM:

8.34.1 Detailed Description
This structure defines an affine mesh group transform (translation, rotation or scaling).

See also:

VESSEL::MeshgroupTransform

Public Types

* enum { TRANSLATE, ROTATE, SCALE }

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.35 MESHGROUPEX Struct Reference

277

Public Attributes

e union {
struct {
VECTORS3 ref
rotation reference point
VECTOR3 axis
rotation axis direction
float angle
rotation angle [rad]
} rotparam
struct {
VECTORS3 shift
translation vector
} transparam
struct {
VECTOR3 scale
scaling factor
} scaleparam
1P

¢ int nmesh
mesh index (>=0)

* int ngrp

group index (>= 0, or < 0 to indicate entire mesh)

e enum MESHGROUP_TRANSFORM:: { ... } transform

transformation flag

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPIL.h

8.35 MESHGROUPEX Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for MESHGROUPEX:

8.35.1 Detailed Description

extended mesh group definition

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference

278

Public Attributes

* NTVERTEX * Vtx

vertex list

¢ WORD x* Idx

index list

* DWORD nVix

vertex count

*« DWORD nldx

index count

* DWORD Mtrlldx

material index (>= 1, O=none)

* DWORD TexIdx

texture index (>= 1, O=none)

* DWORD UsrFlag
user-defined flag

¢ WORD zBias

z bias

* WORD Flags

internal flags

* DWORD TexIdxEx [MAXTEX]

additional texture indices

* float TexMixEx [MAXTEX]

texture mix values

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.36 MFD Class Reference

#include <MFDAPI.h>

Inheritance diagram for MFD:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 279

Collaboration diagram for MFD:

8.36.1 Detailed Description

This class acts as an interface for user defined MFD (multi functional display) modes.

This class acts as an interface for user defined MFD (multi functional display) modes. It provides control
over keyboard and mouse functions to manipulate the MFD mode, and allows the module to draw the
MFD display. The MFD class is a pure virtual class. Each userdefined MFD mode requires the definition
of a specialised class derived from MFD. An example for a generic MFD mode implemented as a plugin
module can be found in orbitersdk\samples\CustomMFD.

Public Member Functions

* MFD (DWORD w, DWORD h, VESSEL xvessel)

Constructor. Creates a new MFD.

e virtual ~MFD ()
MFD destructor.

* virtual void Update (HDC hDC)=0
Callback function: Orbiter calls this method when the MFD needs to update its display.

* void InvalidateDisplay ()

Force a display update in the next frame.

¢ void InvalidateButtons ()
Force the MFD buttons to be redrawn.

¢ void Title (HDC hDC, const char =xtitle) const
Displays a title string in the upper left corner of the MFD display.

¢ HPEN SelectDefaultPen (HDC hDC, DWORD i) const

Selects a predefined pen into the device context.

¢ HFONT SelectDefaultFont (HDC hDC, DWORD i) const
Selects a predefined MFD font into the device context.

* virtual bool ConsumeKeyBuffered (DWORD key)
MFD keyboard handler for buffered keys.

* virtual bool ConsumeKeylmmediate (char xkstate)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 280

MFD keyboard handler for immediate (unbuffered) keys.

e virtual bool ConsumeButton (int bt, int event)
MFD button handler.

e virtual char * ButtonLabel (int bt)
Return the label for the specified MFD button.

e virtual int ButtonMenu (const MFDBUTTONMENU sxmenu) const

Defines a list of short descriptions for the various MFD mode button/key functions.

e virtual void WriteStatus (FILEHANDLE scn) const

Called when the MFD should write its status to a scenario file.

e virtual void ReadStatus (FILEHANDLE scn)

Called when the MFD should read its status from a scenario file.

e virtual void StoreStatus () const
« virtual void RecallStatus ()

Protected Attributes

*« DWORD W
« DWORD H

width and height of MFD display area (pixel)

e DWORD cw
DWORD ch

character width, height of standard MFD font O (pixel)

VESSEL * pV

pointer to vessel interface

Friends

e class MFD2
¢ class Instrument_User

8.36.2 Constructor & Destructor Documentation

8.36.2.1 MFD::MFD (DWORD w, DWORD F, VESSEL x vessel)

Constructor. Creates a new MFD.

Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 281

Note:

MEFED is a pure virtual function, so it can’t be instantiated directly. It is used as a base class for
specialised MFD modes.

New MFD modes are registered by a call to oapiRegisterMFDMode(). Whenever the new mode is
selected by the user, Orbiter sends a OAPI_MSG_MFD_OPENED signal to the message handler, to
which the module should respond by creating the MFD mode and returning a pointer to it. Orbiter will
automatically destroy the MFD mode when it is turned off.

8.36.3 Member Function Documentation

8.36.3.1 virtual void MFD::Update (HDC hDC) [pure virtual]
Callback function: Orbiter calls this method when the MFD needs to update its display.

Parameters:

hDC Windows device context for drawing on the MFD display surface.

Note:

The frequency at which this function is called corresponds to the "MFD refresh rate" setting in Orbiter’s
parameter settings, unless a redraw is forced by InvalidateDisplay().

Deprecated

This method is deprecated. MFD implementations should derive from MFD2 and use the device-
independent MFD2::Update(oapi::Sketchpads) method instead.

Implemented in MFD2.

8.36.3.2 void MFD::InvalidateDisplay ()
Force a display update in the next frame.

Force a display update in the next frame. This function causes Orbiter to call the MFD’s Update method in
the next frame.

8.36.3.3 void MFD::InvalidateButtons ()
Force the MFD buttons to be redrawn.

Force the MFD buttons to be redrawn. This is useful to alert Orbiter that the MFD mode has dynamically
modified its button labels.

Note:

Orbiter will call the MFD::ButtonLabel method to retrieve the new button labels. Therefore this must
have been updated to return the new labels before calling InvalidateButtons().

If the MFD is part of a 2-D panel view or 3-D virtual cockpit view, Orbiter calls the VES-
SEL2::clbkMFDMode() method to allow the vessel to update its button labels. If the MFD is one
of the two glass cockpit MFD displays, the buttons are updated internally.

If the MFD is displayed in an external window, Orbiter calls the ExternMFD::clbkRefreshButtons()
method to refresh the buttons.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 282

8.36.3.4 void MFD::Title (HDC hDC, const char x title) const
Displays a title string in the upper left corner of the MFD display.

Parameters:

hDC device context
title title string (null-terminated)

Note:

This method should be called from within Update()

The title string can contain up to approx. 35 characters when displayed in the default Courier MFD
font.

This method switches the text colour of the GDI context to white.

Deprecated

This method is deprecated. MFD implementations should derive from MFD2 and use the device-
independent MFD2::Title method instead.

8.36.3.5 HPEN MFD::SelectDefaultPen (HDC ADC, DWORD i) const

Selects a predefined pen into the device context.

Parameters:

hDC Windows device context

i pen index

Returns:

Handle of pen being replaced.

Note:

Currently supported are pen indices 0-5, where

0 = solid, HUD display colour

1 = solid, light green

2 = solid, medium green

3 = solid, medium yellow

4 = solid, dark yellow

5 = solid, medium grey

In principle, an MFD mode may create its own pen resources using the standard Windows CreatePen
function, but using predefined pens is preferred to provide a consistent MFD look.

Deprecated

This method is deprecated. MFD implementations should derive from MFD2 and use the device-
independent MFD2::GetDefaultPen method instead.

8.36.3.6 HFONT MFD::SelectDefaultFont (HDC ADC, DWORD i) const

Selects a predefined MFD font into the device context.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 283

Parameters:

hDC Windows device context

i font index

Returns:

Handle of font being replaced.

Note:

Currently supported are font indices 0-3, where

0 = standard MFD font (Courier, fixed pitch)

1 =small font (Arial, variable pitch)

2 = small font, rotated 90 degrees (Arial, variable pitch)

3 = medium font, (Arial, variable pitch)

In principle, an MFD mode may create its own fonts using the standard Windows CreateFont function,
but using the predefined fonts is preferred to provide a consistent MFD look.

Default fonts are scaled automatically according to the MFD display size.

Deprecated

This method is deprecated. MFD implementations should derive from MFD2 and use the device-
independent MFD2::GetDefaultFont method instead.

8.36.3.7 virtual bool MFD::ConsumeKeyBuffered (DWORD key) [inline, virtual]
MFD keyboard handler for buffered keys.

Parameters:

key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Returns:

The function should return true if it recognises and processes the key, false otherwise.

8.36.3.8 virtual bool MFD::ConsumeKeylmmediate (char * kstate) [inline, virtuall]
MFD keyboard handler for immediate (unbuffered) keys.

Parameters:

kstate keyboard state.

Returns:
The function should return true only if it wants to inhibit Orbiter’s default immediate key handler for
this time step completely.

Note:

The state of single keys can be queried by the KEYDOWN macro.
The immediate key handler is useful where an action should take place while a key is pressed.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 284

8.36.3.9 virtual bool MFD::ConsumeButton (int bf, int event) [inline, virtual]
MFD button handler.

MEFED button handler. This function is called when the user performs a mouse click on a panel button
associated with the MFD.

Parameters:

bt button identifier.

event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)

Returns:

The function should return true if it processes the button event, false otherwise.

Note:

This function is invoked as a response to a call to oapiProcessMFDButton() in a vessel module.
Typically, ConsumeButton() will call ConsumeKeyBuffered() or ConsumeKeyImmediate() to emulate
a keyboard event.

8.36.3.10 virtual charx MFD::ButtonLabel (intbf) [inline, virtual]
Return the label for the specified MFD button.

Parameters:

bt button identifier

Returns:
The function should return a O-terminated character string of up to 3 characters, or NULL if the button
is unlabelled.

Bug

This function should really return a const charx

8.36.3.11 virtual int MFD::ButtonMenu (const MFDBUTTONMENU x* menu) const [inline,

virtuall]

Defines a list of short descriptions for the various MFD mode button/key functions.

Parameters:

menu on return this should point to an array of button menu items. (see notes)

Returns:

number of items in the list

Note:

The definition of the MFDBUTTONMENU struct is:
typedef struct {
const char *xlinel, xline2;

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.36 MFD Class Reference 285

char selchar;

} MEDBUTTONMENU;

containing up to 2 lines of short description, and the keyboard key to trigger the function.

Each line should contain no more than 16 characters, to fit into the MFD display.

If the menu item only uses one line, then line2 should be set to NULL.

menu==0 is valid and indicates that the caller only requires the number ofitems, not the actual list.
A typical implementation would be

int MyMFD::ButtonMenu (const MEFDBUTTONMENU #xmenu) const
{

static const MFDBUTTONMENU mnu[2] = {
{"Select target", 0, 'T"},

{"Select orbit", "reference", 'R’}

bi

if (menu) xmenu = mnu;

return 2;

8.36.3.12 virtual void MFD::WriteStatus (FILEHANDLE scn) const [inline, virtual]

Called when the MFD should write its status to a scenario file.

Parameters:

scn scenario file handle (write only)

Note:

Use the oapiWriteScenario_xxx functions to write MFD status parameters to the scenario.
The default behaviour is to do nothing. MFD modes which need to save status parameters should
overwrite this function.

8.36.3.13 virtual void MFD::ReadStatus (FILEHANDLE scn) [inline, virtual]

Called when the MFD should read its status from a scenario file.

Parameters:

scn scenario file handle (read only)

Note:

Use a loop with oapiReadScenario_nextline() to read MFD status parameters from the scenario.
The default behaviour is to do nothing. MFD modes which need to read status parameters should
overwrite this function.

8.36.3.14 virtual void MFD::StoreStatus () const [inline, virtual]

Called before destruction of the MFD mode, to allow the mode to save its status to static memory.

Note:

This function is called before an MFD mode is destroyed (either because the MFD switches to a
different mode, or because the MFD itself is destroyed). It allows the MFD to back up its status
parameters, so it can restore its last status when it is created next time.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.37 MFD2 Class Reference 286

Since the MFD mode instance is about to be destroyed, status parameters should be backed up either
in static data members, or outside the class instance.

In principle this function could be implemented by opening a file and calling WriteStatus() with the
file handle. However for performance reasons file I/O should be avoided in this function.

The default behaviour is to do nothing. MFD modes which need to save status parameters should
overwrite this function.

8.36.3.15 virtual void MFD::RecallStatus () [inline, virtual]

Called after creation of the MFD mode, to allow the mode to restore its status from the last save.

Note:

This is the counterpart to the StoreStatus() function. It should be implemented if and only if StoreSta-
tus() is implemented.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/MFDAPI.h

8.37 MFD2 Class Reference

#include <MFDAPI.h>

Inheritance diagram for MFD2:

Collaboration diagram for MFD2:

8.37.1 Detailed Description

Extended MFD class.

MFD?2 replaces GDI-specific functions with versions that use the generic Sketchpad class. MFD addons
should derive from MFD?2 instead of MFD, to ensure compatibility with non-GDI graphics clients.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.37 MFD2 Class Reference 287

Public Member Functions

MFD2 (DWORD w, DWORD h, VESSEL x*vessel)

Constructor. Creates a new MFD.

e ~MFD2 ()
MFD destructor.

* DWORD GetWidth () const
Returns the MFD display width.

* DWORD GetHeight () const
Returns the MFD display height.

¢ void Update (HDC hDC)

Dummy implementation of GDI-specific base class method.

« virtual bool Update (oapi::Sketchpad *skp)
Callback function: Orbiter calls this method when the MFD needs to update its display.

* void Title (oapi::Sketchpad *skp, const char xtitle) const
Displays a title string in the upper left corner of the MFD display.

¢ oapi::Pen x GetDefaultPen (DWORD colidx, DWORD intens=0, DWORD style=1) const

Returns a predefined MFD pen resource.

* oapi::Font x GetDefaultFont (DWORD fontidx) const
Returns a predefined MFD font resource.

¢ DWORD GetDefaultColour (DWORD colidx, DWORD intens=0) const

Returns the colour value for a specified colour index and intensity.

8.37.2 Constructor & Destructor Documentation

8.37.2.1 MFD2::MFD2 (DWORD w, DWORD A, VESSEL x vessel) [inline]

Constructor. Creates a new MFD.

Parameters:

w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD.

Note:

MEFD is a pure virtual function, so it can’t be instantiated directly. It is used as a base class for
specialised MFD modes.

New MFD modes are registered by a call to oapiRegisterMFDMode(). Whenever the new mode is
selected by the user, Orbiter sends a OAPI_MSG_MFD_OPENED signal to the message handler, to
which the module should respond by creating the MFD mode and returning a pointer to it. Orbiter will
automatically destroy the MFD mode when it is turned off.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.37 MFD2 Class Reference 288

8.37.3 Member Function Documentation

8.37.3.1 DWORD MFD2::GetWidth () const [inline]
Returns the MFD display width.

Returns:

MED display width [pixel]

See also:

GetHeight

8.37.3.2 DWORD MFD2::GetHeight () const [inline]
Returns the MFD display height.

Returns:

MFD display height [pixel]

See also:

GetWidth

8.37.3.3 void MFD2::Update (HDC kDC) [inline, virtual]

Dummy implementation of GDI-specific base class method.

Note:

Derived classes should overload the Update(oapi::Sketchpads) method instead.

Implements MFD.

8.37.3.4 virtual bool MFD2::Update (oapi::Sketchpad * skp) [virtual]
Callback function: Orbiter calls this method when the MFD needs to update its display.

Parameters:

skp Drawing context for drawing on the MFD display surface.

Note:

The frequency at which this function is called corresponds to the "MFD refresh rate" setting in Orbiter’s
parameter settings, unless a redraw is forced by InvalidateDisplay().
This function must be overwritten by derived classes.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.37 MFD2 Class Reference 289

8.37.3.5 void MFD2::Title (oapi::Sketchpad * skp, const char x title) const
Displays a title string in the upper left corner of the MFD display.

Parameters:

skp Drawing context

title title string (null-terminated)

Note:

This method should be called from within Update()

The title string can contain up to approx. 35 characters when displayed in the default Courier MFD
font.

This method switches the text colour of the drawing context to white.

8.37.3.6 oapi::Penx MFD2::GetDefaultPen (DWORD colidx, DWORD intens = 0, DWORD style =
1) const

Returns a predefined MFD pen resource.

Parameters:

colidx pen colour index (see notes)
intens pen brightness (O=bright, 1=dark)
style pen style (1=solid, 2=dashed)

Returns:

pen resource

Note:

Valid colour indices are O to 4, where
Index Function default colour
0 Main MFD colour green
1 Auxiliary colour 1 yellow
2 Auxiliary colour 2 white
3 Auxiliary colour 3 red
4 Auxiliary colour 4 blue

To select the pen for drawing in the MFD display, call the MFD drawing context’s

oapi::Sketchpad::SetPen method.

The default colours can be overridden by editing Config/MFD/default.cfg.

In principle, an MFD mode may create its own pen resources using the
oapi::GraphicsClient::clbkCreatePen function, but using predefined pens is preferred to provide
a consistent MFD look, and to avoid excessive allocation of drawing resources.

See also:

oapi::Sketchpad::SetPen

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.37 MFD2 Class Reference 290

8.37.3.7 oapi::Fontx MFD2::GetDefaultFont (DWORD fontidx) const

Returns a predefined MFD font resource.

Parameters:

Jfontidx font index

Returns:

font resource

Note:

Currently supported are font indices 0-2, where

0 = standard MFD font (Courier, fixed pitch)

1 =small font (Arial, variable pitch)

2 = small font, rotated 90 degrees (Arial, variable pitch)

To select the font for drawing in the MFD display, call the MFD drawing context’s
oapi::Sketchpad::SetFont method.

In principle, an MFD mode may create its own fonts using the standard Windows CreateFont function,
but using the predefined fonts is preferred to provide a consistent MFD look.

Default fonts are scaled automatically according to the MFD display size.

8.37.3.8 DWORD MFD2::GetDefaultColour (DWORD colidx, DWORD intens = 0) const

Returns the colour value for a specified colour index and intensity.

Parameters:

colidx colour index (see notes)

intens colour brightness (0=bright, 1=dark)

Returns:

Colour value in 0OXBBGGRR format.

Note:
Valid colour indices are O to 4, where
Index Function default colour
0 Main MFD colour green
1 Auxiliary colour 1 yellow
2 Auxiliary colour 2 white
3 Auxiliary colour 3 red
4 Auxiliary colour 4 blue
The returned colour values can be used to set standard text, pen or brush colours for particular display
elements.
See also:

oapi::Sketchpad::SetTextColor

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/MFDAPI.h

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.38 oapi::Module Class Reference 291

8.38 oapi::Module Class Reference

#include <ModuleAPI.h>

Inheritance diagram for oapi::Module:

Collaboration diagram for oapi::Module:

8.38.1 Detailed Description

Generic Orbiter plugin interface class.

Defines generic base class which can be used by plugins to provide a set of interface functions to the Orbiter
core, and callback functions which can be overloaded by derived classes to react to specific types of events.

Public Types

¢ enum RenderMode { RENDER_NONE, RENDER_FULLSCREEN, RENDER_WINDOW }
Simulation graphics support type.

Public Member Functions

Module (HINSTANCE hDLL)

Creates a new Module instance.

e virtual void clbkSimulationStart (RenderMode mode)

Simulation start notification.

e virtual void clbkSimulationEnd ()

Simulation end notification.

* virtual void clbkPreStep (double simt, double simdt, double mjd)

Time step notification before state update.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.38 oapi::Module Class Reference 292

* virtual void clbkPostStep (double simt, double simdt, double mjd)

Time step notification after state update.

* virtual void clbkTimeJump (double simt, double simdt, double mjd)

Discontinuous simulation time jump notification.

« virtual void clbkFocusChanged (OBJHANDLE new_focus, OBJHANDLE old_focus)

Change of input focus notification.

* virtual void clbkTimeAccChanged (double new_warp, double old_warp)

Change of time acceleration notification.

e virtual void clbkNew Vessel (OBJHANDLE hVessel)

Vessel creation notification.

e virtual void clbkDeleteVessel (OBJHANDLE hVessel)

Vessel destruction notification.

* virtual void clbkVesselJump (OBJHANDLE hVessel)

Discontinuous vessel repositioning notification.

* virtual void clbkPause (bool pause)

Simulation pause/resume notification.

8.38.2 Member Enumeration Documentation

8.38.2.1 enum oapi::Module::RenderMode

Simulation graphics support type.

See also:

clbkSimulationStarted

Enumerator:

RENDER_NONE no graphics support
RENDER_FULLSCREEN fullscreen mode
RENDER_WINDOW windowed mode

8.38.3 Constructor & Destructor Documentation

8.38.3.1 oapi::Module::Module (HINSTANCE hDLL)

Creates a new Module instance.

Parameters:

hDLL DLL library instance handle (see InitModule)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.38 oapi::Module Class Reference 293

8.38.4 Member Function Documentation

8.38.4.1 virtual void oapi::Module::clbkSimulationStart (RenderMode mode) [virtual]
Simulation start notification.

This method is called immediately after a simulation session has been set up (i.e. all objects created and
their states set according to the scenario data) and the render window has been opened (if applicable).
Parameters:

mode defines the graphics support (none, fullscreen or windowed)

Default action:

Calls opcOpenRenderViewport, if defined in the module.

8.38.4.2 virtual void oapi::Module::clbkSimulationEnd () [virtual]
Simulation end notification.

This method is called immediately before a simulation session is terminated, and before the render window
is closed.

Default action:

Calls opcCloseRenderViewport, if defined in the module.

8.38.4.3 virtual void oapi::Module::clbkPreStep (double simt, double simdt, double mjd)
[virtual]

Time step notification before state update.

Called at each time step of the simulation, before the state is updated to the current simulation time. This
function is only called when the "physical" state of the simulation is propagated in time. clbkPreStep is not
called while the simulation is paused, even if the user moves the camera.

Parameters:

simt simulation time after the currently processed step [s]
simdt length of the currently processed step [s]

mjd simulation time afte the currently processed step in Modified Julian Date format [days]

Default action:

Calls opcPreStep, if defined in the module.

Note:

This function is called by Orbiter after the new time step length (simdt) and simulation time (simt)
have been calculated, but before the simulation state is integrated to simt. The parameters passed to
clbkPreStep therefore are the values that will be applied in the current simulation step.

See also:

clbkPostStep

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.38 oapi::Module Class Reference 294

8.38.4.4 virtual void oapi::Module::clbkPostStep (double simt, double simdt, double mjd)
[virtual]

Time step notification after state update.

Called at each time step of the simulation, after the state has been updated to the current simulation time.

Parameters:

simt current simulation time [s]
simdt length of the last time step [s]

mjd simulation time in Modified Julian Date format [days]

Default action:

Calls opcPostStep, if defined in the module.

See also:

clbkPreStep

8.38.4.5 virtual void oapi::Module::clbkTimeJump (double simt¢, double simdt, double mjd)
[inline, virtual]

Discontinuous simulation time jump notification.

Called after a discontinuous explicit reset of the simulation time (e.g. using the scenario editor).

Parameters:

simt new simulation time relative to session start [s]
simdt jump interval [s]

mjd new absolute simulation time in MJD format [days]

Default action:

None.

Note:

simdt can be negative if a jump to an earlier time was performed.
simt can become negative if a jump prior to the session start time was performed.

8.38.4.6 virtual void oapi::Module::clbkFocusChanged (OBJHANDLE new_focus, OBJHANDLE
old_focus) [virtual]

Change of input focus notification.

Called when input focus (keyboard and joystick control) is switched to a new vessel (for example as a result
of a call to oapiSetFocus).

Parameters:

new_focus handle of vessel receiving the input focus

old_focus handle of vessel losing focus

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.38 oapi::Module Class Reference 295

Default action:

Calls opcFocusChanged, if defined in the module.

Note:

Currently only objects of type "vessel" can receive the input focus. This may change in future versions.
This callback function is also called at the beginning of the simulation, where new_focus is the vessel
receiving the initial focus, and old_focus is NULL.

clbkFocusChanged is sent to non-vessel modules after the vessels receiving and losing focus have been
notified via VESSEL2::clbkFocusChanged.

8.38.4.7 virtual void oapi::Module::clbkTimeAccChanged (double new_warp, double old_warp)
[virtuall]

Change of time acceleration notification.
Called when the simulation time acceleration factor changes.
Parameters:
new_warp new time acceleration factor
old_warp old time acceleration factor
Default action:

Calls opcTimeAccChanged, if defined in the module.

8.38.4.8 virtual void oapi::Module::clbkNewVessel (OBJHANDLE FhVessel) [inline,
virtuall]

Vessel creation notification.

Sent to modules after a new vessel has been created during the simulation run. Not sent for vessels created
from the scenario script at the start of a session.

Parameters:

hVessel object handle for the new vessel

Default action:

None.

8.38.4.9 virtual void oapi::Module::clbkDeleteVessel (OBJHANDLE hVessel) [virtual]
Vessel destruction notification.

Sent to modules immediately before a vessel is destroyed. After this callback method returns, the object
handle (hVessel) and will no longer be valid. Modules should make sure that they don’t access the vessel
in any form after this point.

Parameters:

hVessel object handle for the vessel being destroyed.

Default action:

Calls opcDeleteVessel, if defined in the module.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.39 oapi::ModuleNV Class Reference 296

8.38.4.10 virtual void oapi::Module::clbkVesselJump (OBJHANDLE #hVessel) [inline,

virtual]
Discontinuous vessel repositioning notification.

Sent to modules after a vessel position has been set explicitly (rather than via continuous state propagation.
This callback can be used to force a refresh of parameters that depend on vessel position.

Parameters:

hVessel vessel object handle

Default action:

None.

Note:
This method is called after a VESSEL.::ShiftCentreOfMass()

8.38.4.11 virtual void oapi::Module::clbkPause (bool pause) [virtual]
Simulation pause/resume notification.

Called when the pause/resume state of the simulation has changed.

Parameters:

pause pause/resume state: true if simulation has been paused, false if simulation has been resumed.

Default action:

Calls opcPause, if defined in the module.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/Module API.h

8.39 oapi::ModuleNV Class Reference

#include <ModuleAPI.h>

Inheritance diagram for oapi::ModuleN'V:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.39 oapi::ModuleNV Class Reference 297

8.39.1 Detailed Description

Generic Orbiter plugin interface class.

Defines generic base class which can be used by plugins to provide a set of interface functions to the
Orbiter core. This class contains only the non-virtual set of methods (excluding callback functions). Plugin
implementations should normally not derive their inferface classes from oapi::ModuleNV, but instead from
class oapi::-Module which includes the virtual callback methods.

Public Member Functions

ModuleNV (HINSTANCE hDLL)

Creates a new ModuleNV instance.

e int Version () const

Module interface version.

HINSTANCE GetModule () const

Returns the module instance handle.

double GetSimTime () const

Returns simulation time since session start.

double GetSimStep () const
Returns the length of the last time step.

double GetSimMID () const

Returns the absolute simulation time in Modified Julian Date format.

Protected Attributes

* int version
¢ HINSTANCE hModule

8.39.2 Constructor & Destructor Documentation

8.39.2.1 oapi::ModuleNV::ModuleNV (HINSTANCE hDLL)

Creates a new ModuleNV instance.

Parameters:

hDLL DLL library instance handle (see InitModule)

8.39.3 Member Function Documentation

8.39.3.1 int oapi::ModuleNV::Version () const [inline]
Module interface version.
Returns:

version number

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.39 oapi::ModuleNV Class Reference 298

8.39.3.2 HINSTANCE oapi::ModuleNV::GetModule () const [inline]

Returns the module instance handle.

Returns:

Module instance handle.

8.39.3.3 double oapi::ModuleNV::GetSimTime () const

Returns simulation time since session start.

Returns:

Simulation session time [s]

Note:

The simulation session timeis useful mainly for time differences. To get an absolute time parameter,
use GetSimMID.

See also:

GetSimMJD, GetSimStep

8.39.3.4 double oapi::ModuleNV::GetSimStep () const

Returns the length of the last time step.

Returns:

Step length [s]

Note:
This method returns the time difference between the current and previous time frame.
This parameter is useful for numerical (finite difference) calculation of time derivatives.
See also:

GetSimTime

8.39.3.5 double oapi::ModuleNV::GetSimMJD () const

Returns the absolute simulation time in Modified Julian Date format.

Returns:

Current Modified Julian Date [days]

Note:

Orbiter defines the Modified Julian Date (MJD) as JD - 2 400 000.5, where JD is the Julian Date. JD
is the interval of time in mean solar days elapsed since 4713 BC January 1 at Greenwich mean noon.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.40 NAVDATA Struct Reference 299

See also:

GetSimTime

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/Module API.h

8.40 NAVDATA Struct Reference

#include <OrbiterAPI.h>

8.40.1 Detailed Description

Navigation transmitter data.
This structure contains both general data (transmitter type, channel, output power and description string)
and type-specific data. To query type-specific data, first check the transmitter type, for example

NAVDATA ndata;

oapiGetNavData (hNav, &ndata);

if (ndata.type == TRANSMITTER_ILS)
approach_dir = ndata.ils.appdir;

Note:

The power Sqy of a transmitter is defined in arbitrary units such that the signal S(r) = Sq 2 drops to 1

at the maximum range rmax , given a default receiver, i.e. Spy = 12 max -

See also:

oapiGetNavData

Public Attributes

DWORD type

transmitter type id

DWORD ch
transmitter channel (0..639)

* double power

transmitter power [arbitrary units]

e const char * descr

pointer to transmitter description string

* union {
struct {
OBJHANDLE hPlanet
associated planet
double Ing
double lat

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.41 NTVERTEX Struct Reference 300

transmitter location [rad]
} vor
struct {
OBJHANDLE hBase
associated base
int npad
pad number (>= 0)
} vtol
struct {
OBJHANDLE hBase
associated base
double appdir
ILS approach direction [rad].
}ils
struct {
OBJHANDLE hVessel
associated vessel
DOCKHANDLE hDock
associated docking port
} ids
struct {
OBJHANDLE hVessel
associated vessel

} xpdr

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.41 NTVERTEX Struct Reference

#include <OrbiterAPI.h>

8.41.1 Detailed Description

vertex definition including normals and texture coordinates

Public Attributes

¢ float x

vertex x position

* floaty

vertex y position

e floatz

vertex z position

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.42 ORBITPARAM Struct Reference 301

¢ float nx

vertex x normal

* float ny

vertex y normal

¢ float nz

vertex 7 normal

¢ float tu

vertex u texture coordinate

e float tv

vertex v texture coordinate

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.42 ORBITPARAM Struct Reference

#include <OrbiterAPI.h>

8.42.1 Detailed Description

Secondary orbital parameters derived from the primary ELEMENTS.

This members of this structure provide additional parameters to the primary elements of contained in the
ELEMENTS structure.

Note:

SMi: for open orbits, this represents the imaginary semi-axis

PeD: distance to lowest point of the orbit from focal point

ApD: distance of highest point of the orbit from focal point. Only defined for closed orbits.
T: orbit period only defined for closed orbits.

PeT: For open orbits, this is negative after periapis passage

ApT: Only defined for closed orbits.

See also:

ELEMENTS, Basics of orbital mechanics

Public Attributes

¢ double SMi

semi-minor axis [m]

¢ double PeD

periapsis distance [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.43 oapi::ParticleStream Class Reference

302

* double ApD

apoapsis distance [m]

¢ double MnA

mean anomaly [rad]

¢ double TrA

true anomaly [rad]

¢ double MnL

mean longitude [rad]

e double TrL

true longitude [rad]

¢ double EcA

eccentric anomaly [rad]

¢ double Lec

linear eccentricity [m]

e double T
orbit period [s]

e double PeT

time to next periapsis passage [s]

* double ApT

time to next apoapsis passage [s]

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.43 oapi::ParticleStream Class Reference

#include <GraphicsAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.43 oapi::ParticleStream Class Reference 303

Collaboration diagram for oapi::ParticleStream:

8.43.1 Detailed Description

Defines an array of "particles" (e.g. for exhaust and reentry effects, gas venting, condensation, etc.).

Each particle is represented by a "billboard" object facing the camera and rendered with a semi-transparent
texture.

Particle streams experience drag in atmosphere. They also can cast shadows on the ground.

Public Member Functions

* ParticleStream (GraphicsClient *_gc, PARTICLESTREAMSPEC xpss)

Constructs a new particle stream.

e ~ParticleStream ()

Destructor.

* void Attach (OBJHANDLE hObj, const VECTOR3 xppos, const VECTOR3 xpdir, const double
ksrclvl)

Attach the stream to an object.

* void Attach (OBJHANDLE hObj, const VECTOR3 &_pos, const VECTOR3 &_dir, const double
ksrclvl)

Attach the stream to an object.

¢ void Detach ()

Detach the stream from its object.

¢ void SetFixedPos (const VECTOR3 &_pos)

Reset the particle source point to a constant value.

¢ void SetFixedDir (const VECTOR3 &_dir)

Reset the particle source direction to a constant value.

* void SetVariablePos (const VECTOR3 *ppos)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.43 oapi::ParticleStream Class Reference 304

Reset the particle source point reference.

* void SetVariableDir (const VECTORS3 xpdir)

Reset the particle source direction reference.

¢ void SetLevelPtr (const double *srclvl)

Reset the particle generator strength reference.

¢ const double * Level () const

Returns the particle generator level.

Protected Attributes

* GraphicsClient * gc¢

* const double * level

¢ OBJHANDLE hRef

* const VECTOR3 x pos
¢ const VECTOR3 x dir
* VECTOR3 lpos

¢ VECTORS Idir

Friends

¢ class GraphicsClient

8.43.2 Constructor & Destructor Documentation
8.43.2.1 oapi::ParticleStream::ParticleStream (GraphicsClient * _gc, PARTICLESTREAMSPEC
* PSS)
Constructs a new particle stream.
Parameters:
_gc pointer to graphics client
pss particle parameter set
Note:

The particle stream will only start to generate particles once it has been attached to an object with
Attach().

8.43.3 Member Function Documentation

8.43.3.1 void oapi::ParticleStream::Attach (OBJHANDLE hObj, const VECTOR3 x ppos, const
VECTORS3 x pdir, const double * srclvl)

Attach the stream to an object.

Parameters:

hObj object handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.43 oapi::ParticleStream Class Reference 305

ppos pointer to particle source point (object frame)
pdir pointer to particle direction (object frame)

srclvl pointer to particle generator level

Note:

This method uses pointers to externally defined position and direction variables which may be modified
by orbiter during the lifetime of the particle stream.

8.43.3.2 void oapi::ParticleStream::Attach (OBJHANDLE hObj, const VECTOR3 & _pos, const
VECTOR3 & _dir, const double * srclvl)

Attach the stream to an object.

Parameters:

hObj object handle
_pos particle source point (object frame)
_dir particle direction (object frame)

srclvl pointer to particle generator level

Note:

This method uses fixed position and direction variables.

8.43.3.3 void oapi::ParticleStream::Detach ()

Detach the stream from its object.

Note:

After detaching the stream, no new particles will be generated, but the existing particle will persist to
the end of their lifetime.

8.43.3.4 void oapi::ParticleStream::SetFixedPos (const VECTOR3 & _pos)

Reset the particle source point to a constant value.

Parameters:

_pos particle source point (reference object frame)

Note:

This method overrides any previous fixed or variable source position.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.43 oapi::ParticleStream Class Reference 306

8.43.3.5 void oapi::ParticleStream::SetFixedDir (const VECTOR3 & _dir)

Reset the particle source direction to a constant value.

Parameters:

_dir particle direction (reference object frame)

Note:

This method overrides any previous fixed or variable source direction.

8.43.3.6 void oapi::ParticleStream::SetVariablePos (const VECTOR3 x ppos)

Reset the particle source point reference.

Parameters:

ppos pointer to particle source point

Note:

This method overrides the previous position reference and any constant position value.

8.43.3.7 void oapi::ParticleStream::SetVariableDir (const VECTORS3 x pdir)

Reset the particle source direction reference.

Parameters:

pdir pointer to particle source direction

Note:

This method overrides the previous direction reference and any constant direction value.

8.43.3.8 void oapi::ParticleStream::SetLevelPtr (const double * srclvl)

Reset the particle generator strength reference.

Parameters:

srclvl pointer to particle generator strength (0...1)

Note:

The generator strength affects the initial opacity of generated particles.
This method overrides the previous strength reference.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.44 PARTICLESTREAMSPEC Struct Reference 307

8.43.3.9 const doublex oapi::ParticleStream::Level () const [inline]

Returns the particle generator level.

Returns:

pointer to particle generator level (0...1)

The documentation for this class was generated from the following file:

* Orbitersdk/include/GraphicsAPLh

8.44 PARTICLESTREAMSPEC Struct Reference

#include <OrbiterAPI.h>

8.44.1 Detailed Description
Particle stream parameters.

Note:

The following mapping methods (LEVELMAP) between stream level L and opacity a are supported:
* LVL_FLAT: o = const

LVL LIN:a =L

LVL_SQRT: a = /(L)

L]

0 ifL < Luin
* LVL_ PLIN: o = ¢ pE=fmin L0 < L < Ly
if L > Liax
0 if L < Lunin
* LVL_PSQRT: a = i Ly <D< Ly
1 if L > Lijax

Public Types

e enum LTYPE { EMISSIVE, DIFFUSE }
Farticle lighting method.

e enum LEVELMAP {
LVL_FLAT, LVL_LIN, LVL_SQRT, LVL_PLIN,
LVL_PSQRT }
Mapping from level to alpha value (particle opacity).

e enum ATMSMAP { ATM_FLAT, ATM_PLIN, ATM_PLOG }

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.44 PARTICLESTREAMSPEC Struct Reference

308

Public Attributes

DWORD flags

streamspec bitflags

¢ double srcsize

particle size at creation [m]

¢ double srcrate

average particle creation rate [Hz]

¢ double vO

emission velocity [m/s]

* double srcspread

velocity spread during creation

¢ double lifetime

average particle lifetime [s]

* double growthrate

particle growth rate [m/s]

¢ double atmslowdown

slowdown rate in atmosphere

e enum PARTICLESTREAMSPEC::LTYPE ltype
Farticle lighting method.

e enum PARTICLESTREAMSPEC::LEVELMAP levelmap
Mapping from level to alpha value (particle opacity).

¢ double Imin
¢ double Imax

min and max levels for level PLIN and PSQRT mapping types

e enum PARTICLESTREAMSPEC::ATMSMAP atmsmap

mapping from atmospheric params to alpha

¢ double amin
¢ double amax

min and max densities for atms PLIN mapping

e SURFHANDLE tex
particle texture handle (NULL for default)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.45 oapi::Pen Class Reference 309

8.44.2 Member Enumeration Documentation

8.44.2.1 enum PARTICLESTREAMSPEC::LTYPE
Particle lighting method.

Enumerator:

EMISSIVE emissive lighting (example: plasma stream)
DIFFUSE (diffuse lighting (example: vapour stream)

8.44.2.2 enum PARTICLESTREAMSPEC::LEVELMAP

Mapping from level to alpha value (particle opacity).

Enumerator:

LVL_FLAT constant (alpha independent of level)
LVL_LIN linear mapping (alpha = level)
LVL_SQRT square root mapping (alpha = sqrt(level)
LVL_PLIN linear mapping in sub-range
LVL_PSQRT square-root mapping in sub-range

8.44.3 Member Data Documentation

8.44.3.1 enum PARTICLESTREAMSPEC::LTYPE PARTICLESTREAMSPEC::Itype
Particle lighting method.

render lighting method

8.44.3.2 enum PARTICLESTREAMSPEC::LEVELMAP PARTICLESTREAMSPEC::levelmap

Mapping from level to alpha value (particle opacity).
mapping from level to alpha

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.45 oapi::Pen Class Reference

#include <DrawAPI.h>

Inheritance diagram for oapi::Pen:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.46 PointLight Class Reference

310

Collaboration diagram for oapi::Pen:

8.45.1 Detailed Description

A pen is a resource used for drawing lines and the outlines of closed figures such as retangles, ellipses and

polygons.

Public Member Functions

e virtual ~Pen ()

Pen destructor.

Protected Member Functions

* Pen (int style, int width, DWORD col)

Pen constructor.

8.45.2 Constructor & Destructor Documentation

8.45.2.1 oapi::Pen::Pen (int style, int width, DWORD col) [inline, protected]

Pen constructor.

Parameters:
style line style (O=invisible, 1=solid, 2=dashed)
width line width [pixel]
col line colour (format: 0xBBGGRR)

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/DrawAPILh

8.46 PointLight Class Reference

#include <OrbiterAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.46 PointLight Class Reference 311

Inheritance diagram for PointLight:

Collaboration diagram for PointLight:

8.46.1 Detailed Description

Class for isotropic point light source.

Public Member Functions

* PointLight (OBJHANDLE hObj, const VECTOR3 &_pos, double _range, double attO, double attl,
double att2)

Creates a white isotropic point light.

* PointLight (OBJHANDLE hObj, const VECTOR3 &_pos, double _range, double attO, double attl,
double att2, COLOUR4 diffuse, COLOUR4 specular, COLOUR4 ambient)

Creates a coloured isotropic point light.

* double GetRange () const

Returns the light source range.

* void SetRange (double _range)

Set the light source range.

¢ const double * GetAttenuation () const

Returns a pointer to attenuation coefficients.

¢ void SetAttenuation (double attQ, double att1, double att2)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.46 PointLight Class Reference 312

Set the attenuation coefficients.

Protected Attributes

¢ double range
¢ double att [3]

8.46.2 Constructor & Destructor Documentation

8.46.2.1 PointLight::PointLight (OBJHANDLE hObj, const VECTOR3 & _pos, double _range,
double att0, double att1, double att2)

Creates a white isotropic point light.

Parameters:

hObj handle of object the point light is attached to
_pos light position in local object coordinates [m]
_range point light range [m]

att0 light attenuation parameters

attl light attenuation parameters

att2 light attenuation parameters

8.46.2.2 PointLight::PointLight (OBJHANDLE hObj, const VECTOR3 & _pos, double _range,
double att0, double attl, double att2, COLOURA diffuse, COLOUR4 specular, COLOUR4 ambient)

Creates a coloured isotropic point light.

Parameters:

hObj handle of object the point light is attached to

_pos point light position in local object coordinates [m]

_range spotlight range [m]

att0 light attenuation parameters

att] light attenuation parameters

att2 light attenuation parameters

diffuse light source’s contribution to lit objects’ diffuse colour component
specular light source’s contribution to lit objects’ specular colour component

ambient light source’s contribution to lit objects’ ambient colour component

8.46.3 Member Function Documentation

8.46.3.1 double PointLight::GetRange () const [inline]

Returns the light source range.

Returns:

Light source range [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.47 oapi::ScreenAnnotation Class Reference 313

8.46.3.2 void PointLight::SetRange (double _range)

Set the light source range.

Parameters:

_range new light source range [m]

Note:

When changing the range, the attenuation factors usually should be adjusted accordingly, to avoid
sharp cutoff edges or large areas of negligible intensity.

8.46.3.3 const doublex PointLight::GetAttenuation () const [inline]

Returns a pointer to attenuation coefficients.

Returns:

Pointer to array of 3 attenuation coefficients.

Note:

The attenuation coefficients define the fractional light intensity I/I0 as a function of distance d:

1 1

Iy attg + datty + d2atts

8.46.3.4 void PointLight::SetAttenuation (double at0, double att1, double att2)

Set the attenuation coefficients.

Parameters:

att0 attenuation coefficient
att]l attenuation coefficient

att2 attenuation coefficient

Note:

The attenuation coefficients define the fractional light intensity I/10 as a function of distance d:

1 1

Iy atto + datt; + d2atts

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/OrbiterAPIL.h

8.47 oapi::ScreenAnnotation Class Reference

#include <GraphicsAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.47 oapi::ScreenAnnotation Class Reference 314

Collaboration diagram for oapi::ScreenAnnotation:

8.47.1 Detailed Description

Defines a block of text displayed on top of the simulation render window.

Public Member Functions

* ScreenAnnotation (GraphicsClient *_gc)

Constructs a new annotation object.

e virtual ~ScreenAnnotation ()

Destroys the annotation object.

e virtual void Reset ()

Resets annotation parameters to their default values.

e virtual void SetText (char xstr)

Set the text to be displayed by the annotation object.

* virtual void ClearText ()

Clear the text display.

* virtual void SetPosition (double x1, double y1, double x2, double y2)

Set the bounding box of the annotation block.

e virtual void SetSize (double scale)

Set the font size.

e virtual void SetColour (const VECTOR3 &col)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.47 oapi::ScreenAnnotation Class Reference 315

Set the font colour.

e virtual void Render ()

Render the annotation text into the simulation window.

8.47.2 Constructor & Destructor Documentation

8.47.2.1 oapi::ScreenAnnotation::ScreenAnnotation (GraphicsClient * _gc)

Constructs a new annotation object.

Parameters:

_gc pointer to graphics client

8.47.3 Member Function Documentation

8.47.3.1 virtual void oapi::ScreenAnnotation::SetText (char x str) [virtual]

Set the text to be displayed by the annotation object.

Parameters:

str character string

8.47.3.2 virtual void oapi::ScreenAnnotation::SetPosition (double x1, double yI, double x2, double
y2) [virtual]

Set the bounding box of the annotation block.

Parameters:

x1 left edge

y1 top edge

x2 right edge

y2 bottom edge
Note:

The positions are relative to the boundaries of the render window, in the range O to 1, where (0,0) is
the top left edge, and (1,1) is the bottom right edge of the render window.

8.47.3.3 virtual void oapi::ScreenAnnotation::SetSize (double scale) [virtual]
Set the font size.
Parameters:

scale font size parameter (>0)

Note:

scale=1 defines the default font size, scale<1 is a smaller font, and scale>1 a larger font.
The default font size is automatically scaled with the size of the render window.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference

316

8.47.3.4 virtual void oapi::ScreenAnnotation::SetColour (const VECTOR3 & col)

Set the font colour.

Parameters:

col RGB values of the font colour (0..1 in each component)

The documentation for this class was generated from the following file:

* Orbitersdk/include/GraphicsAPLh

8.48 oapi::Sketchpad Class Reference

#include <DrawAPI.h>

8.48.1 Detailed Description

A Sketchpad object defines an environment for drawing onto 2-D surfaces.

[Vvirtual]

It defines drawing primitives (lines, text, etc.) that can be used for preparing MFD surfaces, panel elements

or vessel markings.

The drawing object is an abstract class which must be implemented by derived graphics clients. An example

for a DrawingObject implementation is via the Windows GDI (graphics device interface).

Public Types

* enum TAlign_horizontal { LEFT, CENTER, RIGHT }

Horizontal text alignment modes.

* enum TAlign_vertical { TOP, BASELINE, BOTTOM }

Vertical text alignment modes.

* enum BkgMode { BK_TRANSPARENT, BK_OPAQUE }

Background modes for text output.

Public Member Functions

e Sketchpad (SURFHANDLE s)

Constructs a drawing object for a given surface.

* virtual ~Sketchpad ()

Destructor. Destroys a drawing object.

e virtual Font * SetFont (Font xfont) const

Selects a new font to use.

* virtual Pen * SetPen (Pen xpen) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 317

Selects a new pen to use.

e virtual Brush * SetBrush (Brush xbrush) const

Selects a new brush to use.

* virtual void SetTextAlign (TAlign_horizontal tah=LEFT, TAlign_vertical tav=TOP)

Set horizontal and vertical text alignment.

e virtual DWORD SetTextColor (DWORD col)

Set the foreground colour for text output.

¢ virtual DWORD SetBackgroundColor (DWORD col)

Set the background colour for text output.

* virtual void SetBackgroundMode (BkgMode mode)

Set the background mode for text output.

e virtual DWORD GetCharSize ()

Return height and (average) width of a character in the currently selected font.

e virtual DWORD GetTextWidth (const char xstr, int len=0)

Return the width of a text string in the currently selected font.

* virtual void SetOrigin (int X, int y)

Set the position in the surface bitmap which is mapped to the origin of the coordinate system for all drawing
functions.

* virtual bool Text (int X, int y, const char xstr, int len)

Draw a text string.

* virtual bool TextBox (int x1, int y1, int X2, int y2, const char #str, int len)

Draw a text string into a rectangle.

* virtual void Pixel (int x, int y, DWORD col)

Draw a single pixel in a specified colour.

* virtual void MoveTo (int x, int y)

Move the drawing reference to a new point.

* virtual void LineTo (int x, int y)

Draw a line to a specified point.

* virtual void Line (int x0, int y0, int x1, int y1)

Draw a line between two points.

* virtual void Rectangle (int x0, int y0, int x1, int y1)

Draw a rectangle (filled or outline).

* virtual void Ellipse (int x0, int y0, int x1, int y1)

Draw an ellipse from its bounding box.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 318

* virtual void Polygon (const IVECTOR?2 #pt, int npt)

Draw a closed polygon given by vertex points.

« virtual void Polyline (const IVECTOR?2 xpt, int npt)

Draw a line of piecewise straight segments.

* virtual void PolyPolygon (const IVECTOR?2 xpt, const int *npt, const int nline)

Draw a set of polygons.

* virtual void PolyPolyline (const IVECTOR?2 xpt, const int *npt, const int nline)

Draw a set of polylines.

¢ SURFHANDLE GetSurface () const

Returns the surface associated with the drawing object.

e virtual HDC GetDC ()

Return the Windows device context handle, if applicable.

8.48.2 Member Enumeration Documentation

8.48.2.1 enum oapi::Sketchpad::TAlign_horizontal

Horizontal text alignment modes.

See also:

SetTextAlign

Enumerator:

LEFT align left
CENTER align center
RIGHT align right

8.48.2.2 enum oapi::Sketchpad::TAlign_vertical

Vertical text alignment modes.

See also:

SetTextAlign

Enumerator:

TOP align top of text line
BASELINE align base line of text line
BOTTOM align bottom of text line

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference

319

8.48.2.3 enum oapi::Sketchpad::BkgMode

Background modes for text output.

See also:

SetBackgroundMode

Enumerator:

BK_TRANSPARENT transparent background
BK_OPAQUE opaque background

8.48.3 Constructor & Destructor Documentation

8.48.3.1 oapi::Sketchpad::Sketchpad (SURFHANDLE s)

Constructs a drawing object for a given surface.

Parameters:

s surface handle

8.48.4 Member Function Documentation

8.48.4.1 virtual Fontx oapi::Sketchpad::SetFont (Font * font) const

Selects a new font to use.

Parameters:

Jont pointer to font resource

Returns:

Previously selected font.

Default action:

None, returns NULL.

See also:

oapi::Font, oapi::GraphicsClient::clbkCreateFont

[inline, virtual]

8.48.4.2 virtual Penx oapi::Sketchpad::SetPen (Pen * pen) const [inline, virtuall]

Selects a new pen to use.

Parameters:

pen pointer to pen resource, or NULL to disable outlines

Returns:

Previously selected pen.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 320

Default action:

None, returns NULL.

See also:

oapi::Pen, oapi::GraphicsClient::clbkCreatePen

8.48.4.3 virtual Brushx oapi::Sketchpad::SetBrush (Brush x brush) const [inline, virtual]

Selects a new brush to use.
Parameters:

brush pointer to brush resource, or NULL to disable fill mode

Returns:

Previously selected brush.

Default action:

None, returns NULL.

See also:

oapi::Brush, oapi::GraphicsClient::clbkCreateBrush

8.48.4.4 virtual void oapi::Sketchpad::SetTextAlign (TAlign_horizontal tah = LEFT, TAlign_-
vertical tav = TOP) [inline, virtual]

Set horizontal and vertical text alignment.

Parameters:

tah horizontal alignment
tay vertical alignment

Default action:

None.

8.48.4.5 virtual DWORD oapi::Sketchpad::SetTextColor (DWORD col) [inline, virtual]

Set the foreground colour for text output.

Parameters:

col colour description (format: 0xBBGGRR)

Returns:

Previous colour setting.

Default action:

None, returns 0.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 321

8.48.4.6 virtual DWORD oapi::Sketchpad::SetBackgroundColor (DWORD c¢ol) [inline,

virtuall]

Set the background colour for text output.

Parameters:

col background colour description (format: 0OxBBGGRR)

Returns:

Previous colour setting

Default action:

None, returns 0.

Note:
The background colour is only used if the background mode is set to BK_OPAQUE.

See also:

SetBackgroundMode

8.48.4.7 virtual void oapi::Sketchpad::SetBackgroundMode (BkgMode mode) [inline,

virtual]

Set the background mode for text output.

Parameters:

mode background mode (see BkgMode)

Default action:

None.

Note:

In opaque background mode, the text background is drawn in the current background colour (see
SetBackgroundColor).
The default background mode (before the first call of SetBackgroundMode) should be transparent.

See also:

SetBackgroundColor, SetTextColor

8.48.4.8 virtual DWORD oapi::Sketchpad::GetCharSize () [inline, virtual]

Return height and (average) width of a character in the currently selected font.

Returns:

Height of character cell [pixel] in the lower 16 bit of the return value, and (average) width of character
cell [pixel] in the upper 16 bit.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 322

Default action:

None, returns 0.

Note:

The height value should describe the height of the character cell (i.e. the smallest box circumscribing
all characters in the font), but without any "internal leading", i.e. the gap between characters in two
consecutive lines.

For proportional fonts, the width value should be an approximate average character width.

8.48.4.9 virtual DWORD oapi::Sketchpad::GetTextWidth (const char x str, int len = 0)
[inline, virtual]

Return the width of a text string in the currently selected font.

Parameters:

str text string

len string length, or O for auto (O-terminated string)

Returns:

width of the string, drawn in the currently selected font [pixel]

Default action:

None, returns 0.

See also:

SetFont

8.48.4.10 virtual void oapi::Sketchpad::SetOrigin (intx,inty) [inline, virtual]

Set the position in the surface bitmap which is mapped to the origin of the coordinate system for all drawing
functions.

Parameters:

x horizontal position of the origin [pixel]

y vertical position of the origin [pixel]

Default action:

None.

Note:

By default, the reference point for drawing function coordinates is the top left corner of the bitmap,
with positive x-axis to the right, and positive y-axis down.

SetOrigin can be used to shift the logical reference point to a different position in the surface bitmap
(but not to change the orientation of the axes).

If the drawing system used by an implementation does not support this function directly, the derived
class should itself account for the shift in origin, by subtracting the offset from all coordinate values.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 323

8.48.4.11 virtual bool oapi::Sketchpad::Text (int x, int y, const char * str, int len) [inline,
virtuall]

Draw a text string.

Parameters:

x reference x position [pixel]
y reference y position [pixel]
str text string

len string length for output

Returns:

true on success, false on failure.

Default action:

None, returns false.

8.48.4.12 virtual bool oapi::Sketchpad::TextBox (int x1, int y1, int x2, int y2, const char * str, int
len) [virtual]

Draw a text string into a rectangle.

Parameters:

x1 left edge [pixel]
y1 top edge [pixel]

x2 right edge [pixel]
¥y2 bottom edge [pixel]
str text string

len string length for output

Returns:

true on success, false on failure.

Default action:

Implementation via Text calls.

Note:

This method should write the text string into the specified rectangle, using the current font. Line breaks
should automatically be applied as required to fit the text in the box.
The bottom edge (y2) should probably be ignored, so text isn’t truncated if it doesn’t fit the box.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 324

8.48.4.13 virtual void oapi::Sketchpad::Pixel (int x, int y, DWORD col) [inline, virtual]

Draw a single pixel in a specified colour.

Parameters:

x x-coordinate of point [pixel]
y y-coordinate of point [pixel]
col pixel colour (format: 0OXBBGGRR)

8.48.4.14 virtual void oapi::Sketchpad::MoveTo (int x,inty) [inline, virtual]

Move the drawing reference to a new point.

Parameters:

x x-coordinate of new reference point [pixel]

y y-coordinate of new reference point [pixel]

Note:

Some methods use the drawing reference point for drawing operations, e.g. LineTo.

Default action:

None.

See also:

LineTo

8.48.4.15 virtual void oapi::Sketchpad::LineTo (intx,inty) [inline, virtual]

Draw a line to a specified point.

Parameters:

x x-coordinate of line end point [pixel]

y y-coordinate of line end point [pixel]

Default action:

None.

Note:

The line starts at the current drawing reference point.

See also:

MoveTo

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 325

8.48.4.16 virtual void oapi::Sketchpad::Line (int x0, int y0, int x/,intyl) [inline, virtual]

Draw a line between two points.

Parameters:

x0 x-coordinate of first point [pixel]
y0 y-coordinate of first point [pixel]
x1 x-coordinate of second point [pixel]

y1 y-coordinate of second point [pixel]

Default action:

None.

Note:

The line is drawn with the currently selected pen.

See also:

SetPen

8.48.4.17 virtual void oapi::Sketchpad::Rectangle (int x0, int y0, int x1, int yI) [virtual]

Draw a rectangle (filled or outline).

Parameters:

x0 left edge of rectangle [pixel]

y0 top edge of rectangle [pixel]

x1 right edge of rectangle [pixel]
y1 bottom edge of rectangle [pixel]

Default action:

Draws the rectangle from 4 line segments by calling MoveTo and LineTo.

Note:

Derived classes should overload this method if possible, because the default method does not allow to
draw filled rectangles, and may be less efficient than a dedicated implementation.
Implementations should fill the rectangle with the currently selected brush resource.

See also:

MoveTo, LineTo, Ellipse, Polygon

8.48.4.18 virtual void oapi::Sketchpad::Ellipse (int x0, int y0, int xI, int yI) [inline,
virtual]

Draw an ellipse from its bounding box.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 326

Parameters:

x0 left edge of bounding box [pixel]

y0 top edge of bounding box [pixel]

x1 right edge of bounding box [pixel]
y1 bottom edge of bounding box [pixel]

Default action:

None.

Note:

Implementations should fill the ellipse with the currently selected brush resource.

See also:

Rectangle, Polygon

8.48.4.19 virtual void oapi::Sketchpad::Polygon (const IVECTOR2 x pt, int npt) [inline,
virtuall]

Draw a closed polygon given by vertex points.

Parameters:

pt list of vertex points

npt number of points in the list

Default action:

None.

Note:

Implementations should draw the outline of the polygon with the current pen, and fill it with the current
brush.
The polygon should be closed, i.e. the last point joined with the first one.

See also:

Polyline, PolyPolygon, Rectangle, Ellipse

8.48.4.20 virtual void oapi::Sketchpad::Polyline (const IVECTOR2 x pt, int npf) [inline,
virtuall]

Draw a line of piecewise straight segments.

Parameters:

pt list of vertex points

npt number of points in the list

Default action:

None

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.48 oapi::Sketchpad Class Reference 327

Note:

Implementations should draw the line with the currently selected pen.

Polylines are open figures: the end points are not connected, and no fill operation is performed.
See also:

Polygon, PolyPolyline, Rectangle, Ellipse

8.48.4.21 virtual void oapi::Sketchpad::PolyPolygon (const IVECTOR2 x pt, const int * npt, const
int nline) [virtual]

Draw a set of polygons.

Parameters:

pt list of vertex points for all polygons
npt list of number of points for each polygon

nline number of polygons

Default action:

Calls Polygon for each line in the list.

Note:

The number of entries in npt must be >= nline, and the number of points in pt must be at least the sum
of the values in npt.

Implementations should overload this function if they can provide efficient direct support for it. Oth-
erwise, the base class implementation should be sufficient.

See also:

Polygon, Polyline, PolyPolyline

8.48.4.22 virtual void oapi::Sketchpad::PolyPolyline (const IVECTOR2 x pt, const int * npt, const
int nline) [virtual]

Draw a set of polylines.

Parameters:

pt list of vertex points for all lines
npt list of number of points for each line

nline number of lines

Default action:

Calls Polyline for each line in the list.

Note:

The number of entries in npt must be >= nline, and the number of points in pt must be at least the sum
of the values in npt.

Implementations should overload this function if they can provide efficient direct support for it. Oth-
erwise, the base class implementation should be sufficient.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.49 SpotLight Class Reference 328

See also:

Polyline, Polygon, PolyPolygon

8.48.4.23 SURFHANDLE oapi::Sketchpad::GetSurface () const [inline]

Returns the surface associated with the drawing object.

Returns:

Surface handle

8.48.4.24 virtual HDC oapi::Sketchpad::GetDC () [inline, virtual]

Return the Windows device context handle, if applicable.

Returns:

device context handle

Default action:

None, returns NULL.

Note:

Sketchpad implementations based on the Windows GDI system should overload this function to return
the device context handle here. All other implementations should not overload this function.

The device context returned by this function should not be released (e.g. with ReleaseDC). The device
context is released automatically when the Sketchpad instance is destroyed.

This method should be regarded as temporary. Ultimately, the device-dependent drawing mechanism
should be hidden outside the sketchpad implementation.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/DrawAPI.h

8.49 SpotLight Class Reference

#include <OrbiterAPI.h>

Inheritance diagram for SpotLight:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.49 SpotLight Class Reference 329

Collaboration diagram for SpotLight:

8.49.1 Detailed Description

Class for directed spot light sources.

Public Member Functions

¢ SpotLight (OBJHANDLE hObj, const VECTOR3 &_pos, const VECTOR3 &_dir, double _range,
double att0, double attl, double att2, double _umbra, double _penumbra)

Creates a white spotlight.

» SpotLight (OBJHANDLE hObj, const VECTOR3 &_pos, const VECTOR3 &_dir, double _range,
double attO, double attl, double att2, double _umbra, double _penumbra, COLOUR4 diffuse,
COLOUR4 specular, COLOUR4 ambient)

Creates a coloured spotlight.

¢ double GetUmbra () const

Returns the angular aperture of inner (maximum intensity) cone.

¢ double GetPenumbra () const

Returns the angular aperture of outer (zero intensity) cone.

¢ void SetAperture (double _umbra, double _penumbra)

Set the spotlight cone geometry.

Protected Attributes

* double umbra
e double penumbra

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.49 SpotLight Class Reference 330

8.49.2 Constructor & Destructor Documentation

8.49.2.1 SpotLight::SpotLight (OBJHANDLE kObj, const VECTOR3 & _pos, const VECTOR3 &
_dir, double _range, double att0, double att1, double att2, double _umbra, double _penumbra)

Creates a white spotlight.

Parameters:

hObj handle of object the spotlight is attached to

_pos spotlight position in local object coordinates [m]

_dir spotlight direction in local object coordinates

_range spotlight range [m]

att0 light attenuation parameters

att] light attenuation parameters

att2 light attenuation parameters

_umbra angular aperture of inner (maximum intensity) cone [rad]

_penumbra angular aperture of outer (zero intensity) cone [rad]

Note:

Direction vector _dir must be normalised to length 1.
0 < _umbra <= penumbra <= pi is reqired.
The intensity falloff between _umbra and _penumbra is linear from maximum intensity to zero.

8.49.2.2 SpotLight::SpotLight (OBJHANDLE /0bj, const VECTOR3 & _pos, const VECTOR3
& _dir, double _range, double att0, double attl, double att2, double _umbra, double _penumbra,
COLOURA4 diffuse, COLOURA4 specular, COLOUR4 ambient)

Creates a coloured spotlight.

Parameters:

hObj handle of object the spotlight is attached to

_pos spotlight position in local object coordinates [m]

_dir spotlight direction in local object coordinates

_range spotlight range [m]

att0 light attenuation parameters

attl light attenuation parameters

att2 light attenuation parameters

_umbra angular aperture of inner (maximum intensity) cone [rad]
_penumbra angular aperture of outer (zero intensity) cone [rad]

diffuse light source’s contribution to lit objects’ diffuse colour component
specular light source’s contribution to lit objects’ specular colour component

ambient light source’s contribution to lit objects’ ambient colour component

Note:

Direction vector _dir must be normalised to length 1.
0 < _umbra <= penumbra <= pi is reqired.
The intensity falloff between _umbra and _penumbra is linear from maximum intensity to zero.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.50 VECTOR3 Union Reference 331

8.49.3 Member Function Documentation

8.49.3.1 double SpotLight::GetUmbra () const [inline]

Returns the angular aperture of inner (maximum intensity) cone.

Returns:

Aperture of inner spotlight cone [rad]

See also:

GetPenumbra

8.49.3.2 double SpotLight::GetPenumbra () const [inline]

Returns the angular aperture of outer (zero intensity) cone.

Returns:

Aperture of outer spotlight cone [rad]

See also:

GetUmbra

8.49.3.3 void SpotLight::SetAperture (double _umbra, double _penumbra)

Set the spotlight cone geometry.

Parameters:

_umbra angular aperture of inner (maximum intensity) cone [rad]

_penumbra angular aperture of outer (zero intensity) cone [rad]

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.50 VECTORS3 Union Reference

#include <OrbiterAPI.h>

8.50.1 Detailed Description

3-element vector

Public Attributes

¢ double data [3]

array data interface

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 332

e struct {
double x
double y
double z

b

named data interface

The documentation for this union was generated from the following file:

¢ Orbitersdk/include/OrbiterAPLh

8.51 VESSEL Class Reference

#include <VesselAPI.h>
Inheritance diagram for VESSEL.:

8.51.1 Detailed Description

Base class for objects of vessel type (spacecraft and similar).

VESSEL is the base class for addon modules of ’vessel’ type (spacecraft, space stations, satellites, deep
space probes, etc.) This class defines the interface between the module’s vessel definition and the param-
eters maintained internally by Orbiter to define the vessel state. It provides access to the various status
parameters and methods of individual spacecraft.

It is important to note that a VESSEL instance represents an interface to an existing vessel in Orbiter, rather
than the vessel itself. Vessels can exist without a corresponding VESSEL instance, and deleting a VESSEL
instance does not delete the vessel.

Most of the methods provided by the VESSEL class are of ’get’ and ’set’ type, i.e. for retrieving vessel
parameter states, or modifying them. It does not define any callback functions that Orbiter uses to notify
the vessel of events. These are implemented in the VESSEL?2 class (derived from VESSEL). The latest
version of the interface is VESSEL3, which implements additional functions. User-defined vessel casses
should therefore be derived from VESSEL3 instead of VESSEL.

For complete vessel module implementations, see the examples in Orbitersdk\samples, for example
Orbitersdk\samples' ShuttlePB.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference

333

Construction/creation, handles and interfaces

VESSEL (OBJHANDLE hVessel, int fmodel=1)

Creates a VESSEL interface instance from a vessel handle.

int Version () const

Returns the version number of the vessel interface class.

const OBJHANDLE GetHandle () const

Returns a handle to the vessel object.

bool GetEditorModule (char xfname) const

Returns the file name of the DLL containing the vessel’s scenario editor extensions.

General vessel properties

char * GetName () const

Returns the vessel’s name.

char * GetClassName () const

Returns the vessel’s class name.

int GetFlightModel () const

Returns the requested realism level for the flight model.

int GetDamageModel () const

Returns the current user setting for damage and systems failure simulation.

bool GetEnableFocus () const

Returns true if the vessel can receive the input focus, false otherwise.

void SetEnableFocus (bool enable) const

Enable or disable the vessel’s ability to receive the input focus.

double GetSize () const

Returns the vessel’s mean radius.

void SetSize (double size) const

Set the vessel’s mean radius.

void SetVisibilityLimit (double vislimit, double spotlimit=-1) const

Defines the vessel’s range of visibility.

double GetClipRadius () const

Returns the radius of the vessel’s circumscribing sphere.

void SetAlbedoRGB (const VECTOR3 &albedo) const

Set the average colour distribution reflected by the vessel.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 334

* void SetClipRadius (double rad) const

Set the radius of the vessel’s circumscribing sphere.

* double GetEmptyMass () const

Returns the vessel’s empty mass (excluding propellants).

¢ void SetEmptyMass (double m) const

Set the vessel’s empty mass (excluding propellants).

¢ double GetCOG_elev () const

Elevation of the vessel’s centre of gravity (COG) above ground.

¢ void GetTouchdownPoints (VECTOR3 &ptl, VECTOR3 &pt2, VECTOR3 &pt3) const

Returns the three points defining the vessel’s ground contact plane.

* void SetTouchdownPoints (const VECTOR3 &ptl, const VECTOR3 &pt2, const VECTOR3 &pt3)
const

Defines the three points defining the vessel’s ground contact plane.

* void SetSurfaceFrictionCoeff (double mu_Ing, double mu_lat) const

Set friction coefficients for ground contact.

¢ void GetCrossSections (VECTOR3 &cs) const

Returns the vessel’s cross sections projected in the direction of the vessel’s principal axes.

¢ void SetCrossSections (const VECTOR3 &cs) const

Defines the vessel’s cross-sectional areas, projected in the directions of the vessel’s principal axes.

¢ void GetPMI (VECTOR3 &pmi) const

Returns the vessel’s mass-normalised principal moments of inertia (PMI).

¢ void SetPMI (const VECTOR3 &pmi) const

Set the vessel’s mass-normalised principal moments of inertia (PMI).

¢ double GetGravityGradientDamping () const

Returns the vessel’s damping coefficient for gravity field gradient-induced torque.

* bool SetGravityGradientDamping (double damp) const
Sets the vessel’s damping coefficient for gravity field gradient-induced torque.

Vessel state

¢ void GetStatus (VESSELSTATUS &status) const

Returns the vessel’s current status parameters in a VESSELSTATUS structure.

¢ void GetStatusEx (void *status) const

Returns the vessel’s current status parameters in a VESSELSTATUSx structure (version x >= 2).

¢ void DefSetState (const VESSELSTATUS xstatus) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference

335

Set default vessel status parameters.

void DefSetStateEx (const void *status) const

Set default vessel status parameters.

DWORD GetFlightStatus () const

Returns a bit flag defining the vessel’s current flight status.

double GetMass () const

Returns current (total) vessel mass.

void GetGlobalPos (VECTOR3 &pos) const

Returns the vessel’s current position in the global reference frame.

void GetGlobalVel (VECTOR3 &vel) const

Returns the vessel’s current velocity in the global reference frame.

void GetRelativePos (OBJHANDLE hRef, VECTOR3 &pos) const

Returns the vessel’s current position with respect to another object.

void GetRelativeVel (OBJHANDLE hRef, VECTOR3 &vel) const

Returns the vessel’s current velocity relative to another object.

void GetAngularVel (VECTOR3 &avel) const

Returns the vessel’s current angular velocity components around its principal axes.

void GetAngularAcc (VECTOR3 &aacc) const

Returns the vessel’s current angular acceleration components around its principal axes.

void GetLinearMoment (VECTOR3 &F) const

Returns the linear force vector currently acting on the vessel.

void GetAngularMoment (VECTOR3 &amom) const

Returns the sum of angular moments currently acting on the vessel.

void SetAngularVel (const VECTOR3 &avel) const

Applies new angular velocity to the vessel.

void GetGlobalOrientation (VECTOR3 &arot) const

Returns the Euler angles defining the vessel’s orientation.

void SetGlobalOrientation (const VECTOR3 &arot) const

Sets the vessel’s orientation via Euler angles.

bool GroundContact () const

Returns a flag indicating contact with a planetary surface.

bool OrbitStabilised () const

Flag indicating whether orbit stabilisation is used for the vessel at the current time step.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 336

* bool NonsphericalGravityEnabled () const

Flag for nonspherical gravity perturbations.

¢ DWORD GetADCtrIMode () const

Returns aerodynamic control surfaces currently under manual control.

¢ void SetADCtrIMode (DWORD mode) const

Configure manual input mode for aerodynamic control surfaces.

¢ bool ActivateNavmode (int mode)

Activates one of the automated orbital navigation modes.

¢ bool DeactivateNavmode (int mode)

Deactivates an automated orbital navigation mode.

* bool ToggleNavmode (int mode)
Toggles a navigation mode on/off-

¢ bool GetNavmodeState (int mode)

Returns the current active/inactive state of a navigation mode.

Orbital elements

See also: Basics of orbital mechanics

* const OBJHANDLE GetGravityRef () const

Returns a handle to the main contributor of the gravity field at the vessel’s current position.

* OBJHANDLE GetElements (ELEMENTS &el, double &mjd_ref) const

Returns osculating orbital elements.

* bool GetElements (OBJHANDLE hRef, ELEMENTS &el, ORBITPARAM xprm=0, double mjd_-
ref=0, int frame=FRAME_ECL) const

Returns osculating elements and additional orbit parameters.

* bool SetElements (OBJHANDLE hRef, const ELEMENTS &el, ORBITPARAM xprm=0, double
mjd_ref=0, int frame=FRAME_ECL) const

Set vessel state (position and velocity) by means of a set of osculating orbital elements.

¢ OBJHANDLE GetSMi (double &smi) const

Returns the magnitude of the semi-minor axis of the current osculating orbit.

* OBJHANDLE GetArgPer (double &arg) const

Returns argument of periapsis of the current osculating orbit.

* OBJHANDLE GetPeDist (double &pedist) const

Returns the periapsis distance of the current osculating orbit.

* OBJHANDLE GetApDist (double &apdist) const

Returns the apoapsis distance of the current osculating orbit.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 337

Surface-relative parameters

const OBJHANDLE GetSurfaceRef () const

Returns a handle to the surface reference object (planet or moon).

double GetAltitude () const

Returns the altitude above the surface of the surface reference body.

double GetPitch () const

Returns the current pitch angle with respect to the local horizon.

double GetBank () const

Returns the current bank (roll) angle with respect to the local horizon.

double GetYaw () const

Returns the current yaw angle with respect to the local horizon.

OBJHANDLE GetEquPos (double &longitude, double &latitude, double &radius) const

Returns vessel’s current equatorial position with respect to the closest planet or moon.

Atmospheric parameters

¢ const OBJHANDLE GetAtmRef () const

Returns a handle to the reference body for atmospheric calculations.

double GetAtmTemperature () const

Returns ambient atmospheric temperature at current vessel position.

* double GetAtmDensity () const

Returns atmospheric density at current vessel position.

double GetAtmPressure () const

Returns static atmospheric pressure at current vessel position.

Aerodynamic state parameters

double GetDynPressure () const

Returns the current dynamic pressure for the vessel.

double GetMachNumber () const

Returns the vessel’s current Mach number.

double GetAirspeed () const

Returns magnitude of the freestream airflow velocity vector measured in ship-relative coordinates.

* bool GetHorizonAirspeedVector (VECTOR3 &v) const

Returns the airspeed vector in local horizon coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 338

* bool GetShipAirspeedVector (VECTOR3 &v) const

Returns the airspeed vector in vessel coordinates.

* double GetAOA () const

Returns the current angle of attack.

* double GetSlipAngle () const

Returns the lateral (yaw) angle between the velocity vector and the vessel’s longitudinal axis.

Airfoils and control surfaces

¢ void CreateAirfoil (AIRFOIL_ORIENTATION align, const VECTOR3 &ref, AirfoilCoeffFunc cf,
double ¢, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

* AIRFOILHANDLE CreateAirfoil2 (AIRFOIL_ORIENTATION align, const VECTOR3 &ref, Air-
foilCoeffFunc cf, double c, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

¢ AIRFOILHANDLE CreateAirfoil3 (AIRFOIL_ORIENTATION align, const VECTOR3 &ref, Air-
foilCoeffFuncEXx cf, void *context, double ¢, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

¢ bool GetAirfoilParam (AIRFOILHANDLE hAirfoil, VECTOR3 sxref, AirfoilCoeffFunc *cf, void
xxcontext, double *xc, double xS, double *A) const

Returns the parameters of an existing airfoil.

* void EditAirfoil (AIRFOILHANDLE hAirfoil, DWORD flag, const VECTOR3 &ref, AirfoilCoeff-
Func cf, double c, double S, double A) const

Resets the parameters of an existing airfoil definition.

* bool DelAirfoil (AIRFOILHANDLE hAirfoil) const

Deletes a previously defined airfoil.

¢ void ClearAirfoilDefinitions () const

Removes all airfoils currently defined for the vessel.

¢ void CreateControlSurface (AIRCTRL_TYPE type, double area, double dCl, const VECTOR3 &ref,
int axissAIRCTRL_AXIS_AUTO, UINT anim=(UINT)-1) const

Creates an aerodynamic control surface.

e CTRLSURFHANDLE CreateControlSurface2 (AIRCTRL_TYPE type, double area, double dCl,
const VECTOR3 &ref, int axis=sAIRCTRL_AXIS_AUTO, UINT anim=(UINT)-1) const

Creates an aerodynamic control surface and returns a handle.

e CTRLSURFHANDLE CreateControlSurface3 (AIRCTRL_TYPE type, double area, double dCl,
const VECTOR3 &ref, int axis=AIRCTRL_AXIS_AUTO, double delay=1.0, UINT anim=(UINT)-
1) const

Creates an aerodynamic control surface and returns a handle.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 339

bool DelControlSurface (CTRLSURFHANDLE hCtrlSurf) const

Deletes a previously defined aerodynamic control surface.

void ClearControlSurfaceDefinitions () const

Removes all aerodynamic control surfaces.

void SetControlSurfaceLevel (AIRCTRL_TYPE type, double level) const

Updates the position of an aerodynamic control surface.

void SetControlSurfaceLevel (AIRCTRL_TYPE type, double level, bool direct) const

Updates the position of an aerodynamic control surface.

double GetControlSurfaceLevel (AIRCTRL_TYPE type) const

Returns the current position of a control surface.

void CreateVariableDragFElement (double *drag, double factor, const VECTOR3 &ref) const

Attaches a modifyable drag component to the vessel.

void ClearVariableDragElements () const

Removes all drag elements defined with CreateVariableDragElement.

Aerodynamic vessel properties (legacy model)

The methods in this group are used only if the vessel does not define any airfoils.

void GetCW (double &cw_z_pos, double &cw_z_neg, double &cw_x, double &cw_y) const

Returns the vessel’s wind resistance coefficients (legacy flight model only).

void SetCW (double cw_z_pos, double cw_z_neg, double cw_x, double cw_y) const

Set the vessel’s wind resistance coefficients along its axis directions.

double GetWingAspect () const

Returns the vessel’s wing aspect ratio (Wingspan2 /wing area).

void SetWingAspect (double aspect) const

Set the wing aspect ratio (wingspan2 /wing area).

double GetWingEffectiveness () const

Returns the wing form factor used in aerodynamic calculations.

void SetWingEffectiveness (double eff) const

Set the wing form factor for aerodynamic lift and drag calculations.

void GetRotDrag (VECTOR3 &rd) const

Returns the vessel’s atmospheric rotation resistance coefficients.

void SetRotDrag (const VECTOR3 &rd) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference

340

Set the vessel’s atmospheric rotation resistance coefficients.

double GetPitchMomentScale () const

Returns the scaling factor for the pitch moment.

void SetPitchMomentScale (double scale) const

Sets the scaling factor for the pitch moment.

double GetYawMomentScale () const

Returns the scaling factor for the yaw moment.

void SetYawMomentScale (double scale) const

Sets the scaling factor for the yaw moment.

double GetTrimScale () const

Returns the scaling factor for the pitch trim control.

void SetTrimScale (double scale) const

Sets the scaling factor for the pitch trim control.

void SetLiftCoeffFunc (LiftCoeffFunc Icf) const

Defines the callback function for aerodynamic lift calculation.

Forces

double GetLift () const

Returns magnitude of aerodynamic lift force vector.

double GetDrag () const

Returns magnitude of aerodynamic drag force vector.

bool GetWeightVector (VECTOR3 &G) const

Returns gravitational force vector in local vessel coordinates.

bool GetThrustVector (VECTOR3 &T) const

Returns thrust force vector in local vessel coordinates.

bool GetLiftVector (VECTOR3 &L) const

Returns aerodynamic lift force vector in local vessel coordinates.

bool GetDragVector (VECTOR3 &D) const

Returns aerodynamic drag force vector in local vessel coordinates.

bool GetForceVector (VECTOR3 &F) const

Returns total force vector acting on the vessel in local vessel coordinates.

bool GetTorqueVector (VECTOR3 &M) const

Returns the total torque vector acting on the vessel in local vessel coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 341

¢ void AddForce (const VECTOR3 &F, const VECTOR?3 &r) const
Add a custom body force.

Fuel management

* PROPELLANT_HANDLE CreatePropellantResource (double maxmass, double mass=-1.0, double
efficiency=1.0) const

Create a new propellant resource ("fuel tank”).

¢ void DelPropellantResource (PROPELLANT_HANDLE &ph) const

Remove a propellant resource.

¢ void ClearPropellantResources () const

Remove all propellant resources for the vessel.

* DWORD GetPropellantCount () const

Returns the current number of vessel propellant resources.

* PROPELLANT_HANDLE GetPropellantHandleByIndex (DWORD idx) const

Returns the handle of a propellant resource for a given index.

¢ double GetPropellantMaxMass (PROPELLANT_HANDLE ph) const

Returns the maximum capacity of a propellant resource.

¢ void SetPropellantMaxMass (PROPELLANT_HANDLE ph, double maxmass) const

Reset the maximum capacity of a fuel resource.

¢ double GetPropellantMass (PROPELLANT_HANDLE ph) const

Returns the current mass of a propellant resource.

¢ void SetPropellantMass (PROPELLANT_HANDLE ph, double mass) const

Reset the current mass of a propellant resource.

* double GetTotalPropellantMass () const

Returns the vessel’s current total propellant mass.

* double GetPropellantEfficiency (PROPELLANT_HANDLE ph) const

Returns the efficiency factor of a propellant resource.

* void SetPropellantEfficiency (PROPELLANT_HANDLE ph, double efficiency) const

Reset the efficiency factor of a fuel resource.

* double GetPropellantFlowrate (PROPELLANT_HANDLE ph) const

Returns the current mass flow rate from a propellant resource.

* double GetTotalPropellantFlowrate () const

Returns the current total mass flow rate, summed over all propellant resources.

¢ void SetDefaultPropellantResource (PROPELLANT_HANDLE ph) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 342

Define a "default" propellant resource.

PROPELLANT_HANDLE GetDefaultPropellantResource () const

Returns the handle for the vessel’s default propellant resource.

double GetMaxFuelMass () const

Returns the maximum capacity of the vessel’s default propellant resource.

void SetMaxFuelMass (double mass) const

Set the maximum fuel capacity of the vessel’s default propellant resource.

double GetFuelMass () const

Returns the current mass of the vessel’s default propellant resource.

void SetFuelMass (double mass) const

Reset the current mass of the vessel’s default propellant resource.

double GetFuelRate () const

Returns the current mass flow rate from the default propellant resource.

Thruster management

THRUSTER_HANDLE CreateThruster (const VECTOR3 &pos, const VECTOR3 &dir, double
maxthO0, PROPELLANT_HANDLE hp=NULL, double isp0=0.0, double isp_ref=0.0, double p_-
ref=101.4e3) const

Add a logical thruster definition for the vessel.

bool DelThruster (THRUSTER_HANDLE &th) const

Delete a logical thruster definition.

void ClearThrusterDefinitions () const

Delete all thruster and thruster group definitions.

DWORD GetThrusterCount () const

Returns the number of thrusters currently defined.

THRUSTER_HANDLE GetThrusterHandleByIndex (DWORD idx) const

Returns the handle of a thruster specified by its index.

PROPELLANT_HANDLE GetThrusterResource (THRUSTER_HANDLE th) const

Returns a handle for the propellant resource feeding the thruster.

void SetThrusterResource (THRUSTER_HANDLE th, PROPELLANT_HANDLE ph) const

Connect a thruster to a propellant resource.

void GetThrusterRef (THRUSTER_HANDLE th, VECTOR3 &pos) const

Returns the thrust force attack point of a thruster.

void SetThrusterRef (THRUSTER_HANDLE th, const VECTOR3 &pos) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 343

Reset the thrust force attack point of a thruster.

void GetThrusterDir (THRUSTER_HANDLE th, VECTOR3 &dir) const

Returns the force direction of a thruster.

void SetThrusterDir (THRUSTER_HANDLE th, const VECTOR3 &dir) const

Reset the force direction of a thruster.

double GetThrusterMax0 (THRUSTER_HANDLE th) const

Returns the maximum vacuum thust rating of a thruster.

void SetThrusterMax0 (THRUSTER_HANDLE th, double maxth0O) const

Reset the maximum vacuum thrust rating of a thruster.

double GetThrusterMax (THRUSTER_HANDLE th) const

Returns the current maximum thrust rating of a thruster.

double GetThrusterMax (THRUSTER_HANDLE th, double p_ref) const

Returns the maximum thrust rating of a thruster at a specific ambient pressure.

double GetThrusterIsp0 (THRUSTER_HANDLE th) const

Returns the vacuum fuel-specific impulse (Isp) rating for a thruster.

double GetThrusterlsp (THRUSTER_HANDLE th) const

Returns the current fuel-specific impulse (Isp) rating of a thruster.

double GetThrusterlsp (THRUSTER_HANDLE th, double p_ref) const

Returns the fuel-specific impulse (Isp) rating of a thruster at a specific ambient atmospheric pressure.

void SetThrusterlsp (THRUSTER_HANDLE th, double isp) const

Reset the fuel-specific impulse (Isp) rating of a thruster, assuming no pressure dependence.

void SetThrusterIsp (THRUSTER_HANDLE th, double isp0, double isp_ref, double p_ref=101.4e3)
const

Reset the fuel-specific impulse (Isp) rating of a thruster including a pressure dependency.

double GetThrusterLevel (THRUSTER_HANDLE th) const

Returns the current thrust level setting of a thruster.

void SetThrusterLevel (THRUSTER_HANDLE th, double level) const

Set thrust level for a thruster.

void IncThrusterLevel (THRUSTER_HANDLE th, double dlevel) const
Apply a change to the thrust level of a thruster.

void SetThrusterLevel_SingleStep (THRUSTER_HANDLE th, double level) const

Set the thrust level of a thruster for the current time step only.

void IncThrusterLevel_SingleStep (THRUSTER_HANDLE th, double dlevel) const

Apply a thrust level change to a thruster for the current time step only.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 344

¢ void GetThrusterMoment (THRUSTER_HANDLE th, VECTOR3 &F, VECTOR3 &T) const

Returns the linear moment (force) and angular moment (torque) currently generated by a thruster.

¢ double GetISP () const

Returns the vessel’s current default fuel-specific impulse.

¢ void SetISP (double isp) const

Sets the default Isp value for subsequently created thrusters.

Thruster group management

* THGROUP_HANDLE CreateThrusterGroup (THRUSTER_HANDLE xth, int nth, THGROUP_-
TYPE thgt) const

Combine thrusters into a logical group.

* bool DelThrusterGroup (THGROUP_HANDLE thg, bool delth=false) const

Delete a thruster group and (optionally) all associated thrusters.

¢ bool DelThrusterGroup (THGROUP_TYPE thgt, bool delth=false) const

Delete a default thruster group and (optionally) all associated thrusters.

» THGROUP_HANDLE GetThrusterGroupHandle (THGROUP_TYPE thgt) const

Returns the handle of a default thruster group.

* THGROUP_HANDLE GetUserThrusterGroupHandleByIndex (DWORD idx) const

Returns the handle of a user-defined (nonstandard) thruster group.

* DWORD GetGroupThrusterCount (THGROUP_HANDLE thg) const

Returns the number of thrusters assigned to a logical thruster group.

* DWORD GetGroupThrusterCount (THGROUP_TYPE thgt) const

Returns the number of thrusters assigned to a standard logical thruster group.

 THRUSTER_HANDLE GetGroupThruster (THGROUP_HANDLE thg, DWORD idx) const

Returns a handle for a thruster that belongs to a specified thruster group.

« THRUSTER_HANDLE GetGroupThruster (THGROUP_TYPE thgt, DWORD idx) const

Returns a handle for a thruster that belongs to a standard thruster group.

* DWORD GetUserThrusterGroupCount () const

Returns the number of user-defined (nonstandard) thruster groups.

* bool ThrusterGroupDefined (THGROUP_TYPE thgt) const
Indicates if a default thruster group is defined by the vessel.

¢ void SetThrusterGroupLevel (THGROUP_HANDLE thg, double level) const

Sets the thrust level for all thrusters in a group.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 345

void SetThrusterGroupLevel (THGROUP_TYPE thgt, double level) const

Sets the thrust level for all thrusters in a standard group.

void IncThrusterGroupLevel (THGROUP_HANDLE thg, double dlevel) const

Increments the thrust level for all thrusters in a group.

void IncThrusterGroupLevel (THGROUP_TYPE thgt, double dlevel) const

Increments the thrust level for all thrusters in a standard group.

void IncThrusterGroupLevel_SingleStep (THGROUP_HANDLE thg, double dlevel) const

Increments the thrust level of a group for a single time step.

void IncThrusterGroupLevel_SingleStep (THGROUP_TYPE thgt, double dlevel) const

Increments the thrust level of a standard group for a single time step.

double GetThrusterGroupLevel (THGROUP_HANDLE thg) const

Returns the mean thrust level for a thruster group.

double GetThrusterGroupLevel (THGROUP_TYPE thgt) const

Returns the mean thrust level for a default thruster group.

double GetManualControlLevel (THGROUP_TYPE thgt, DWORD mode=MANCTRL_-
ATTMODE, DWORD device=MANCTRL_ANYDEVICE) const

Returns the thrust level of an attitude thruster group set via keyboard or mouse input.

Reaction control system

int GetAttitudeMode () const

Returns the current RCS (reaction control system) thruster mode.

bool SetAttitudeMode (int mode) const

Sets the vessel’s RCS (reaction control system) thruster mode.

int ToggleAttitudeMode () const

Switch between linear and rotational RCS mode.

void GetAttitudeRotLevel (VECTOR3 &th) const

Returns the current combined thrust levels for the reaction control system thruster groups in rotational
mode.

void SetAttitudeRotLevel (const VECTOR3 &th) const

Set RCS thruster levels for rotation in all 3 vessel axes.

void SetAttitudeRotLevel (int axis, double th) const

Set RCS thruster level for rotation around a single axis.

void GetAttitudeLinLevel (VECTOR3 &th) const

Returns the current combined thrust levels for the reaction control system thruster groups in linear (trans-
lational) mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 346

¢ void SetAttitudeLinLevel (const VECTOR3 &th) const

Set RCS thruster levels for linear translation in all 3 vessel axes.

» void SetAttitudeLinLevel (int axis, double th) const

Set RCS thruster level for linear translation along a single axis.

Communication interface

* int SendBufferedKey (DWORD key, bool down=true, char xkstate=0)

Send a simulated buffered key event to the vessel.

Navigation radio interface

* void InitNavRadios (DWORD nnav) const

Defines the number of navigation (NAV) radio receivers supported by the vessel.

¢ DWORD GetNavCount () const

Returns the number of NAV radio receivers.

¢ bool SetNavChannel (DWORD n, DWORD ch) const

Sets the channel of a NAV radio receiver.

¢ DWORD GetNavChannel (DWORD n) const

Returns the current channel setting of a NAV radio receiver.

* float GetNavRecvFreq (DWORD n) const

Returns the current radio frequency of a NAV radio receiver.

* void EnableTransponder (bool enable) const

Enable/disable transmission of transponder signal.

* bool SetTransponderChannel (DWORD ch) const

Switch the channel number of the vessel’s transponder.

¢ void EnableIDS (DOCKHANDLE hDock, bool bEnable) const

Enable/disable one of the vessel’s IDS (Instrument Docking System) transmitters.

¢ bool SetIDSChannel (DOCKHANDLE hDock, DWORD ch) const

Switch the channel number of one of the vessel’s IDS (Instrument Docking System) transmitters.

* NAVHANDLE GetTransponder () const

Return handle of vessel transponder if available.

* NAVHANDLE GetIDS (DOCKHANDLE hDock) const

Return handle of one of the vessel’s instrument docking system (IDS) radio transmitters.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 347

¢ NAVHANDLE GetNavSource (DWORD n) const

Return handle of transmitter source currently received by one of the vessel’s NAV receivers.

Cockpit camera methods

¢ void SetCameraOffset (const VECTOR3 &co) const

Set the camera position for internal (cockpit) view.

¢ void GetCameraOffset (VECTOR3 &co) const

Returns the current camera position for internal (cockpit) view.

¢ void SetCameraDefaultDirection (const VECTOR3 &cd) const

Set the default camera direction for internal (cockpit) view.

¢ vyoid SetCameraDefaultDirection (const VECTOR3 &cd, double tilt) const

Set the default camera direction and tilt angle for internal (cockpit) view.

¢ void GetCameraDefaultDirection (VECTOR3 &cd) const

Returns the default camera direction for internal (cockpit) view.

* void SetCameraCatchAngle (double cangle) const

Set the angle over which the cockpit camera auto-centers to default direction.

* void SetCameraRotationRange (double left, double right, double up, double down) const

Sets the range over which the cockpit camera can be rotated from its default direction.

¢ void SetCameraShiftRange (const VECTOR3 &fpos, const VECTOR3 &lpos, const VECTOR3
&rpos) const

Set the linear movement range for the cockpit camera.

* void SetCameraMovement (const VECTOR3 &fpos, double fphi, double ftht, const VECTOR3
&lpos, double Iphi, double Itht, const VECTOR3 &rpos, double rphi, double rtht) const

Set both linear movement range and orientation of the cockpit camera when "leaning"” forward, left and
right.

Mesh methods

¢ void ClearMeshes (bool retain_anim) const

Remove all mesh definitions for the vessel.

UINT AddMesh (const char xmeshname, const VECTOR3 xofs=0) const

Load a mesh definition for the vessel from a file.

UINT AddMesh (MESHHANDLE hMesh, const VECTOR3 xofs=0) const

Add a pre-loaded mesh definition to the vessel.

UINT InsertMesh (const char *xmeshname, UINT idx, const VECTOR3 *xofs=0) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 348

Insert or replace a mesh at a specific index location of the vessel’s mesh list.

UINT InsertMesh (MESHHANDLE hMesh, UINT idx, const VECTOR3 *0fs=0) const

Insert or replace a mesh at a specific index location of the vessel’s mesh list.

bool DelMesh (UINT idx, bool retain_anim=false) const

Remove a mesh from the vessel’s mesh list.

bool ShiftMesh (UINT idx, const VECTOR3 &ofs) const

Shift the position of a mesh relative to the vessel’s local coordinate system.

void ShiftMeshes (const VECTOR3 &ofs) const

Shift the position of all meshes relative to the vessel’s local coordinate system.

bool GetMeshOffset (UINT idx, VECTOR3 &ofs) const

Returns the mesh offset in the vessel frame.

UINT GetMeshCount () const

Number of meshes.

MESHHANDLE GetMesh (VISHANDLE vis, UINT idx) const

Obtain mesh handle for a vessel mesh.

DEVMESHHANDLE GetDevMesh (VISHANDLE vis, UINT idx) const

Returns a handle for a device-specific mesh instance.

const MESHHANDLE GetMeshTemplate (UINT idx) const

Obtain a handle for a vessel mesh template.

const char * GetMeshName (UINT idx) const

Obtain mesh file name for an on-demand mesh.

MESHHANDLE CopyMeshFromTemplate (UINT idx) const

Make a copy of one of the vessel’s mesh templates.

WORD GetMeshVisibilityMode (UINT idx) const

Returns the visibility flags for a vessel mesh.

void SetMeshVisibilityMode (UINT idx, WORD mode) const
Set the visibility flags for a vessel mesh.

bool MeshgroupTransform (VISHANDLE vis, const MESHGROUP_TRANSFORM &mt) const

Affine transformation of a mesh group.

int MeshModified (MESHHANDLE hMesh, UINT grp, DWORD modflag)

Notifies Orbiter of a change in a mesh group.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 349

Animations

* void RegisterAnimation () const
Logs a request for calls to VESSEL2::clbkAnimate.

¢ void UnregisterAnimation () const

Unlogs an animation request.

e UINT CreateAnimation (double initial_state) const

Create a mesh animation object.

¢ bool DelAnimation (UINT anim) const

Delete an existing mesh animation object.

* ANIMATIONCOMPONENT_HANDLE AddAnimationComponent (UINT anim, double stateQ,
double statel, MGROUP_TRANSFORM xtrans, ANIMATIONCOMPONENT_HANDLE par-
ent=NULL) const

Add a component (rotation, translation or scaling) to an animation.

* bool DelAnimationComponent (UINT anim, ANIMATIONCOMPONENT_HANDLE hAC)

Remove a component from an animation.

¢ bool SetAnimation (UINT anim, double state) const

Set the state of an animation.

e UINT GetAnimPtr (ANIMATION sxanim) const

Returns a pointer to the array of animations defined by the vessel.

Recording/playback functions

* bool Recording () const

Flag for active recording session.

* bool Playback () const

Flag for active playback session.

* void RecordEvent (const char xevent_type, const char xevent) const

Writes a custom tag to the vessel’s articulation data stream during a running recording session.

Coordinate transformations

¢ void ShiftCentreOfMass (const VECTOR3 &shift)

Register a shift in the centre of mass after a structural change (e.g. stage separation).

¢ void ShiftCG (const VECTOR3 &shift)
Shift the centre of gravity of a vessel.

* bool GetSuperstructureCG (VECTOR3 &cg) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 350

Returns the centre of gravity of the superstructure to which the vessel belongs, if applicable.

void GetRotationMatrix (MATRIX3 &R) const

Returns the current rotation matrix for transformations from the vessel’s local frame of reference to the
global frame.

void SetRotationMatrix (const MATRIX3 &R) const

Applies a rotation by replacing the vessel’s local to global rotation matrix.

void GlobalRot (const VECTOR3 &rloc, VECTOR3 &rglob) const

Performs a rotation of a direction from the local vessel frame to the global frame.

void HorizonRot (const VECTOR3 &rloc, VECTOR?3 &rhorizon) const

Performs a rotation from the local vessel frame to the current local horizon frame.

void HorizonInvRot (const VECTOR3 &rhorizon, VECTOR3 &rloc) const

Performs a rotation of a direction from the current local horizon frame to the local vessel frame.

void Local2Global (const VECTOR3 &local, VECTOR3 &global) const

Performs a transformation from local vessel coordinates to global coordinates.

void Global2Local (const VECTOR3 &global, VECTOR3 &local) const

Performs a transformation from global to local vessel coordinates.

void Local2Rel (const VECTOR3 &local, VECTOR3 &rel) const

Performs a transformation from local vessel coordinates to the ecliptic frame centered at the vessel’s refer-
ence body.

Docking port management

See also: Docking port management

DOCKHANDLE CreateDock (const VECTOR3 &pos, const VECTOR3 &dir, const VECTOR3
&rot) const

Create a new docking port.

bool DelDock (DOCKHANDLE hDock) const
Delete a previously defined docking port.

void ClearDockDefinitions () const

Delete all docking ports defined for the vessel.

void SetDockParams (const VECTOR3 &pos, const VECTOR3 &dir, const VECTOR3 &rot)
const

Set the parameters for the vessel’s primary docking port (port 0), or create a new dock if required.

void SetDockParams (DOCKHANDLE hDock, const VECTOR3 &pos, const VECTOR3 &dir,
const VECTOR3 &rot) const

Reset the parameters for a vessel docking port.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 351

void GetDockParams (DOCKHANDLE hDock, VECTOR3 &pos, VECTOR3 &dir, VECTOR3
&rot) const

Returns the paramters of a docking port.

UINT DockCount () const

Returns the number of docking ports defined for the vessel.

DOCKHANDLE GetDockHandle (UINT n) const

Returns a handle to a docking port.

OBJHANDLE GetDockStatus (DOCKHANDLE hDock) const

Returns a handle to a docked vessel.

UINT DockingStatus (UINT port) const

Returns a status flag for a docking port.

int Dock (OBJHANDLE target, UINT n, UINT tgtn, UINT mode) const

Dock to another vessel.

bool Undock (UINT n, const OBJHANDLE exclude=0) const

Release a docked vessel from a docking port.

void SetDockMode (int mode) const
Set the docking approach mode for all docking ports.

Passive attachment management

See also: Attachment management

ATTACHMENTHANDLE CreateAttachment (bool toparent, const VECTOR3 &pos, const VEC-
TOR3 &dir, const VECTOR3 &rot, const char xid, bool loose=false) const

Define a new attachment point for a vessel.

bool DelAttachment (ATTACHMENTHANDLE attachment) const

Delete an attachment point.

void ClearAttachments () const

Delete all attachment points defined for the vessel.

void SetAttachmentParams (ATTACHMENTHANDLE attachment, const VECTOR3 &pos, const
VECTOR3 &dir, const VECTOR3 &rot) const

Reset attachment position and orientation for an existing attachment point.

void GetAttachmentParams (ATTACHMENTHANDLE attachment, VECTOR3 &pos, VECTOR3
&dir, VECTOR3 &rot) const

Retrieve the parameters of an attachment point.

const char * GetAttachmentld (ATTACHMENTHANDLE attachment) const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 352

Retrieve attachment identifier string.

OBJHANDLE GetAttachmentStatus (ATTACHMENTHANDLE attachment) const

Return the current status of an attachment point.

DWORD AttachmentCount (bool toparent) const

Return the number of child or parent attachment points defined for the vessel.

DWORD GetAttachmentIndex (ATTACHMENTHANDLE attachment) const

Return the list index of the vessel’s attachment point defined by its handle.

ATTACHMENTHANDLE GetAttachmentHandle (bool toparent, DWORD 1) const

Return the handle of an attachment point identified by its list index.

bool AttachChild (OBJHANDLE child, ATTACHMENTHANDLE attachment, ATTACHMEN-
THANDLE child_attachment) const

Attach a child vessel to an attachment point.

bool DetachChild (ATTACHMENTHANDLE attachment, double vel=0.0) const

Break an existing attachment to a child.

Exhaust and entry render functions

UINT AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale, SURFHANDLE
tex=0) const

Add an exhaust render definition for a thruster.

UINT AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale, double lofs,
SURFHANDLE tex=0) const

Add an exhaust render definition for a thruster with additional offset.

UINT AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale, const VECTOR3
&pos, const VECTOR3 &dir, SURFHANDLE tex=0) const

Add an exhaust render definition for a thruster with explicit reference position and direction.

UINT AddExhaust (EXHAUSTSPEC x*spec)

Add an exhaust render definition defined by a parameter structure.

bool DelExhaust (UINT idx) const

Removes an exhaust render definition.

DWORD GetExhaustCount () const

Returns the number of exhaust render definitions for the vessel.

bool GetExhaustSpec (UINT idx, double xlscale, double «wscale, VECTOR3 xpos, VECTOR3 xdir,
SURFHANDLE xtex) const

Returns the parameters of an exhaust definition.

bool GetExhaustSpec (UINT idx, EXHAUSTSPEC xspec)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 353

Returns the parameters of an exhaust definition in a structure.

double GetExhaustLevel (UINT idx) const

Returns the current level of an exhaust source.

void SetReentryTexture (SURFHANDLE tex, double plimit=6e7, double Iscale=1.0, double ws-
cale=1.0) const

Select a previously registered texture to be used for rendering reentry flames.

Particle systems

PSTREAM_HANDLE AddParticleStream (PARTICLESTREAMSPEC xpss, const VECTOR3
&pos, const VECTOR3 &dir, double *1vl) const

Adds a custom particle stream to a vessel.

PSTREAM_HANDLE AddExhaustStream (THRUSTER_HANDLE th, PARTICLESTREAMSPEC
+pss=0) const

Adds an exhaust particle stream to a vessel.

PSTREAM_HANDLE AddExhaustStream (THRUSTER_HANDLE th, const VECTOR3 &pos,
PARTICLESTREAMSPEC xpss=0) const

Adds an exhaust particle stream to a vessel.

PSTREAM_HANDLE AddReentryStream (PARTICLESTREAMSPEC x*pss) const

Adds a reentry particle stream to a vessel.

bool DelExhaustStream (PSTREAM_HANDLE ch) const

Delete an existing particle stream.

Nosewheel-steering and wheel brakes

void SetNosewheelSteering (bool activate) const
bool GetNosewheelSteering () const

Returns the activation state of the nose-wheel steering system.

void SetMaxWheelbrakeForce (double f) const

Define the maximum force which can be provided by the vessel’s wheel brake system.

void SetWheelbrakeLevel (double level, int which=0, bool permanent=true) const

Apply the wheel brake.

double GetWheelbrakeLevel (int which) const

Returns the current wheel brake level.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 354

Beacon management

void AddBeacon (BEACONLIGHTSPEC :xbs)
Add a light beacon definition to a vessel.

bool DelBeacon (BEACONLIGHTSPEC xbs)

Remove a beacon definition from the vessel.

void ClearBeacons ()

Remove all beacon definitions from the vessel.

const BEACONLIGHTSPEC * GetBeacon (DWORD idx) const

Returns a pointer to one of the vessel’s beacon specifications.

LightEmitter « AddPointLight (const VECTOR3 &pos, double range, double att0, double attl, dou-
ble att2, COLOURA4 diffuse, COLOUR4 specular, COLOUR4 ambient) const

\ name Light emitters

LightEmitter * AddSpotLight (const VECTOR3 &pos, const VECTOR3 &dir, double range, double
att0, double attl, double att2, double umbra, double penumbra, COLOUR4 diffuse, COLOUR4
specular, COLOUR4 ambient) const

Add a directed spot light source to the vessel.

DWORD LightEmitterCount () const

Returns the number of light sources defined for the vessel.

const LightEmitter * GetLightEmitter (DWORD 1) const

Returns a pointer to a light source object identified by index.

bool DelLightEmitter (LightEmitter xle) const
Deletes the specified light source from the vessel.

void ClearLightEmitters () const

Remove all light sources defined for the vessel.

File I/O

void ParseScenarioLineEx (char xline, void *status) const

Pass a line read from a scenario file to Orbiter for default processing.

Obsolete methods

void SetEngineLevel (ENGINETYPE eng, double level) const

Set the thrust level for an engine group.

void IncEngineLevel (ENGINETYPE eng, double dlevel) const

Increase or decrease the thrust level for an engine group.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51

VESSEL Class Reference 355

double GetMaxThrust (ENGINETYPE eng) const

void SetMaxThrust (ENGINETYPE eng, double th) const

double GetEngineLevel (ENGINETYPE eng) const

double * GetMainThrustModPtr () const

void SetExhaustScales (EXHAUSTTYPE exh, WORD id, double Iscale, double wscale) const

bool DelThrusterGroup (THGROUP_HANDLE &thg, THGROUP_TYPE thgt, bool delth=false)
const

Delete a thruster group and (optionally) all associated thrusters.

UINT AddExhaustRef (EXHAUSTTYPE exh, VECTOR3 &pos, double Iscale=-1.0, double
wscale=-1.0, VECTOR3 xdir=0) const

void DelExhaustRef (EXHAUSTTYPE exh, WORD id) const

void ClearExhaustRefs (void) const

UINT AddAttExhaustRef (const VECTOR3 &pos, const VECTOR3 &dir, double wscale=1.0, dou-
ble Iscale=1.0) const

void AddAttExhaustMode (UINT idx, ATTITUDEMODE mode, int axis, int dir) const

void ClearAttExhaustRefs (void) const

double GetBankMomentScale () const

Returns the scaling factor for the yaw moment.

void SetBankMomentScale (double scale) const

Sets the scaling factor for the yaw moment.

bool SetNavRecv (DWORD n, DWORD ch) const

Sets the channel of a NAV radio receiver.

DWORD GetNavRecv (DWORD n) const

Returns the current channel setting of a NAV radio receiver.

void SetCOG_elev (double h) const

Set the altitude of the vessel’s centre of gravity over ground level when landed.

void ClearMeshes () const

Remove all mesh definitions for the vessel.

void SetMeshVisibleInternal (UINT idx, bool visible) const

Marks a mesh as visible from internal cockpit view.

UINT RegisterAnimSequence (double defmeshstate) const
bool AddAnimComp (UINT seq, ANIMCOMP xcomp)
bool SetAnimState (UINT seq, double state)

void SaveDefaultState (FILEHANDLE scn) const

Causes Orbiter to write default vessel parameters to a scenario file.

void ParseScenarioLine (char xline, VESSELSTATUS xstatus) const

Pass a line read from a scenario file to Orbiter for default processing.

static OBJHANDLE Create (const char *name, const char xclassname, const VESSELSTATUS
&status)

Vessel creation.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 356

Protected Attributes

¢ Vessel x vessel

Orbiter internal vessel class.

¢ short flightmodel

realism level

¢ short version

interface version

8.51.2 Constructor & Destructor Documentation

8.51.2.1 VESSEL::VESSEL (OBJHANDLE hVessel, int fmodel = 1)

Creates a VESSEL interface instance from a vessel handle.

Parameters:

hVessel vessel handle

Jmodel level of realism requested (O=simple, 1=realistic)

Note:

This function creates an interface to an existing vessel. It does not create a new vessel. New vessels
are created with the oapiCreate Vessel and oapiCreate VesselEx functions.

The VESSEL constructor (or the constructor of a derived specialised vessel class) will normally be
invoked in the ovclnit callback function of a vessel module:

class MyVessel: public VESSEL
{
// MyVessel interface definition
bi
DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel)
{
return new MyVessel (hvessel, flightmodel);
}
DLLCLBK void ovcExit (VESSEL xvessel)
{

delete (MyVesselx)vessel;

}
The VESSEL interface instance created in ovclnit should be deleted in ovcEXxit.

See also:

oapiCreateVessel, oapiCreate VesselEx, ovclnit

8.51.3 Member Function Documentation

8.51.3.1 int VESSEL::Version () const [inline]

Returns the version number of the vessel interface class.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 357

Returns:
version number
Note:

The following interface versions are currently in use:
* class VESSEL: version 0
 class VESSEL2: version 1
* class VESSELS3: version 2

See also:

VESSEL?2, VESSEL3

8.51.3.2 const OBJHANDLE VESSEL::GetHandle () const
Returns a handle to the vessel object.
Returns:

vessel handle, as passed to the VESSEL constructor.

Note:

The handle is useful for various vessel-related API function calls.

8.51.3.3 bool VESSEL::GetEditorModule (char * fname) const

Returns the file name of the DLL containing the vessel’s scenario editor extensions.

Parameters:

— fname module file name

Returns:

true if the vessel defines an editor module, false otherwise.

Note:

The vessel’s editor module, if it exists, contains extensions for the Scenario editor module that allows
the user to set vessel-specific parameters (see Doc\ScenarioEditor.pdf).

The string returned by this method is identical to the EditorModule entry in the vessel’s configuration
file.

If the EditorModule entry is not found in the configuration file, this method returns false.

8.51.3.4 charx VESSEL::GetName () const

Returns the vessel’s name.
Returns:
Pointer to vessel’s name

See also:

GetClassName

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 358

8.51.3.5 charx VESSEL::GetClassName () const

Returns the vessel’s class name.

Returns:

Pointer to vessel’s class name.

See also:

GetName

8.51.3.6 int VESSEL::GetFlightModel () const

Returns the requested realism level for the flight model.

Returns:

Flight model realism level. These values are currently supported:
* 0 =simple

e 1 =realistic

Note:

The returned value corresponds to that passed to the VESSEL constructor. This will normally be the
same as the argument of the ovclnit callback function.

The module can use this method to implement different flavours of the flight model (e.g. simplified
and realistic), by defining separate sets of parameters (possibly higher fuel-specific impulse and higher
thrust ratings in the simplified model, less severe damage limits, etc.)

See also:

ovclnit, GetDamageModel

8.51.3.7 int VESSEL::GetDamageModel () const

Returns the current user setting for damage and systems failure simulation.

Returns:

Damage modelling flags. The following settings are currently supported:
* 0 =no damage or failures

¢ 1 = simulate vessel damage and system failures

Note:

The return value depends on the user parameter selection in the Launchpad dialog. It does not change
during a simulation session and will be the same for all vessels.

Future versions may support more differentiated bit flags to indicate different types of damage and
failure simulation.

A vessel implementation should query the damage flag to decide whether to simulate failures.

See also:

GetFlightModel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 359

8.51.3.8 bool VESSEL::GetEnableFocus () const

Returns true if the vessel can receive the input focus, false otherwise.

Returns:

Focus enabled status.

Note:

The vessel can be allowed or prohibited to receive the input focus by using the SetEnableFocus method.
The initial state is defined by the EnableFocus setting in the vessel’s configuration file. If the entry is
missing, the default is true.

Focus-enabled vessels can be selected by the user via the jump vessel dialog (F3).

Once a vessel has received the input focus, all user input via keyboard, mouse and joystick is directed
to this vessel.

For some object types, such as jettisoned rocket stages, enabling input focus may not be useful.

See also:

SetEnableFocus, clbkFocusChanged, oapiGetFocusObject, oapiSetFocusObject

8.51.3.9 void VESSEL::SetEnableFocus (bool enable) const

Enable or disable the vessel’s ability to receive the input focus.

Parameters:

enable focus enabled status: true to to allow the vessel to receive input focus, false otherwise.

Note:

The initial state is defined by the EnableFocus setting in the vessel’s configuration file. If the entry is
missing, the default is true.

If the input focus of the current focus vessel is disabled, it will continue to receive user input, until the
focus is switched to another vessel.

Focus-enabled vessels can be selected by the user via the jump vessel dialog (F3).

Once a vessel has received the input focus, all user input via keyboard, mouse and joystick is directed
to this vessel.

For some object types, such as jettisoned rocket stages, enabling input focus may not be useful.

See also:

GetEnableFocus, clbkFocusChanged, oapiGetFocusObject, oapiSetFocusObject

8.51.3.10 double VESSEL::GetSize () const
Returns the vessel’s mean radius.
Returns:

Vessel mean radius [m)].

Note:

The value returned is that set by a previous call to SetSize or from the Size entry in the vessel’s
configuration file.

There is no guarantee that the return value is correlated to the vessel’s visual representation. In partic-
ular, the size parameter does not change (scale) the visual appearance.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 360

See also:

SetSize

8.51.3.11 void VESSEL::SetSize (double size) const

Set the vessel’s mean radius.

Parameters:

size vessel mean radius [m].

Note:

The size should correspond to the vessel’s visual representation, for example the mesh used to show
the vessel in the simulation window.

The size parameter is used by Orbiter to determine the camera distance at which the vessel is within
visual range of the observer camera. It is also used for calculating various physical parameters.

If SetSize is not called during the vessel setup, the value from the Size entry in the vessel’s configura-
tion file is used.

See also:

GetSize

8.51.3.12 void VESSEL.::SetVisibilityLimit (double vislimit, double spotlimit = —1) const

Defines the vessel’s range of visibility.

Parameters:

vislimit apparent size limit for vessel visibility

spotlimit apparent size limit for vessel "spot" representation.

Note:

This function can be used to define the distance up to which a vessel is visible, independent of screen
resolution.

The vislimit value is the limiting apparent size (as a fraction of the render window vertical) up to
which the vessel is regarded visible. Thus, the vessel is visible if the following condition is satisfied:
S(dtan a)*1 > wvislimit where S is the vessel size, d is its camera distance, and a is the camera
aperture.

If the defined visibility limit exceeds the distance at which the vessel can be rendered as a mesh at the
given screen resolution, it will simply be represented by a circular spot whose size is reduced linearly
(to reach zero at the limiting distance).

If the vessel is to be visible beyond its geometric size (e.g. due to light beacons etc.) then the spotlimit
value can be used to define the limiting distance due to the vessel’s geometry, while vislimit defines
the total visibility range including all enhancing factors such as beacons.

spotlimit <= vislimit is required. If spotlimit < 0 (default), then spotlimit = vislimit is assumed.

If SetVisibilityLimit is not called, then the default value is vislimit = spotlimit = le-3.

See also:

SetSize, SetClipRadius

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 3061

8.51.3.13 double VESSEL::GetClipRadius () const

Returns the radius of the vessel’s circumscribing sphere.

Returns:

Radius of the circumscribing sphere of the vessel’s visual representation [m].

Note:

This parameter describes the radius of the sphere around the vessel that is protected from clipping at
the observer camera’s near clipping plane. (The near clipping plane defines an area around the view
camera within which no objects are rendered. The distance of the near clipping plane cannot be made
arbitrarily small for technical reasons.)

By default, the clip radius is identical to the vessel’s "Size" parameter. However, the size parameter is
correlated to physical vessel properties and may therefore be smaller than the sphere that contains the
vessel’s complete visual representation. In that case, defining a clip radius that is larger than the size
parameter can avoid visual artefacts.

The view camera’s near clip plane distance is adjusted so that it does not intersect any nearby vessel’s
clip radius. However, there is a minimum near clip distance of 2.5m. This means that if the camera
approaches a vessel to less than clip radius + 2.5, clipping may still occur.

Visual cockpit meshes are rendered in a separate pass and are not affected by the general near clip
distance (they have a separate near clip distance of 10cm).

See also:

SetClipRadius, GetSize

8.51.3.14 void VESSEL::SetAlbedoRGB (const VECTOR3 & albedo) const

Set the average colour distribution reflected by the vessel.

Parameters:

albedo vessel colour vector (red, green blue), range [0..1] for each component.

Note:

The colour passed to this function is currently used to define the "spot" colour with which the vessel is
rendered at long distances. It should represent an average colour and brightness of the vessel surface
when fully lit.

The values for each of the RGB components should be in the range 0-1.

The default vessel albedo is bright white (1,1,1).

The albedo can be overridden by the AlbedoRGB entry in the vessel’s config file.

8.51.3.15 void VESSEL::SetClipRadius (double rad) const

Set the radius of the vessel’s circumscribing sphere.

Parameters:

rad Radius of the circumscribing sphere of the vessel’s visual representation [m].

Note:

This parameter describes the radius of the sphere around the vessel that is protected from clipping at
the observer camera’s near clipping plane. (The near clipping plane defines an area around the view

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 362

camera within which no objects are rendered. The distance of the near clipping plane cannot be made
arbitrarily small for technical reasons.)

By default, the clip radius is identical to the vessel’s "Size" parameter. However, the size parameter is
correlated to physical vessel properties and may therefore be smaller than the sphere that contains the
vessel’s complete visual representation. In that case, defining a clip radius that is larger than the size
parameter can avoid visual artefacts.

The view camera’s near clip plane distance is adjusted so that it does not intersect any nearby vessel’s
clip radius. However, there is a minimum near clip distance of 2.5m. This means that if the camera
approaches a vessel to less than clip radius + 2.5, clipping may still occur.

Visual cockpit meshes are rendered in a separate pass and are not affected by the general near clip
distance (they have a separate near clip distance of 10cm).

Setting rad = O reverts to the default behaviour of using the vessel’s "Size" parameter to determine the
clip radius.

See also:

GetClipRadius, SetSize

8.51.3.16 double VESSEL::GetEmptyMass () const

Returns the vessel’s empty mass (excluding propellants).

Returns:

Vessel empty mass [kg].

Note:

The empty mass combines all parts of the vessel except propellant resources defined via CreatePropel-
lantResource.

The empty mass may change during the simulation, often discontinuously, for example as a result of
stage separation.

See also:

oapiGetEmptyMass, GetMassDistribution, SetEmptyMass, CreatePropellantResource

8.51.3.17 void VESSEL::SetEmptyMass (double m) const

Set the vessel’s empty mass (excluding propellants).

Parameters:

m vessel empty mass [kg].

Note:

The empty mass combines all parts of the vessel except propellant resources defined via CreatePropel-
lantResource.

Use SetEmptyMass to account for structural changes such as stage or booster separation, but not for
fuel consumption, which is done directly by Orbiter.

See also:

GetEmptyMass, SetMassDistribution, oapiSetEmptyMass, CreatePropellantResource

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 363

8.51.3.18 double VESSEL::GetCOG_elev () const

Elevation of the vessel’s centre of gravity (COG) above ground.

Returns:

Distance of COG from vessel ground contact plane [m].

Note:

The COG elevation is defined as the normal distance of the vessel’s centre of gravity from the ground
contact plane defined by its three touchdown points.
By definition, the vessel’s centre of gravity coincides with the origin of the local vessel frame.

See also:

GetTouchdownPoints, SetTouchdownPoints

8.51.3.19 void VESSEL::GetTouchdownPoints (VECTOR3 & pt1, VECTOR3 & pt2, VECTOR3 &
pt3) const

Returns the three points defining the vessel’s ground contact plane.

Parameters:

pt1 touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left main wheel (or equivalent)

pt3 touchdown point of right main wheel (or equivalent)

Note:
The function returns 3 reference points defining the vessel’s surface contact points when touched down
on a planetary surface (e.g. landing gear).

See also:

SetTouchdownPoints, GetCOG_elev

8.51.3.20 void VESSEL::SetTouchdownPoints (const VECTOR3 & pt1, const VECTOR3 & pr2,
const VECTORS3 & pt3) const

Defines the three points defining the vessel’s ground contact plane.

Parameters:

pt1 touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left main wheel (or equivalent)

pt3 touchdown point of right main wheel (or equivalent)

Note:

The points are the positions at which the vessel’s undercarriage (or equivalent) touches the surface,
specified in local vessel coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 304

The order of points is significant since it defines the direction of the normal. The points should be
specified such that the cross product pt3-ptl x pt2-ptl defines the horizon "up" direction for the landed
vessel (given a left-handed coordinate system).

Modifying the touchdown points during the simulation while the vessel is on the ground can result
in jumps due to instantaneous position changes (infinite acceleration). To avoid this, the touchdown
points should be modified gradually by small amounts over time (proportional to simulation time
steps).

See also:

GetTouchdownPoints, GetCOG_elev

8.51.3.21 void VESSEL::SetSurfaceFrictionCoeff (double mu_Ing, double mu_lat) const

Set friction coefficients for ground contact.

Parameters:

mu_Ilng friction coefficient in longitudinal direction.

mu_lat friction coefficient in lateral direction.

Note:

The coefficients of surface friction define the deceleration forces during sliding or rolling over a sur-
face. mu_Ing is the coefficient acting in longitudinal (forward) direction, mu_lat the coefficient acting
in lateral (sideways) direction. The friction forces are proportional to the coefficient and the weight of
the vessel:

Ffriction =mu G

The higher the coefficient, the faster the vessel will come to a halt.

Typical parameters for a spacecraft equipped with landing wheels would be mu_Ing = 0.1 and mu_lat
= 0.5. If the vessel hasn’t got wheels, mu_Ing = 0.5.

The coefficients should be adjusted for belly landings when the landing gear is retracted.

The longitudinal and lateral directions are defined by the touchdown points:

SIng =P0 - (P1 + P2)/2, S|a =P2 - P|

See also:

SetTouchdownPoints

8.51.3.22 void VESSEL::GetCrossSections (VECTOR3 & cs) const

Returns the vessel’s cross sections projected in the direction of the vessel’s principal axes.

Parameters:
¢s vector receiving the cross sections of the vessel’s projection into the yz, xz and xy planes, respec-
tively [m?]
See also:

SetCrossSections

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 365

8.51.3.23 void VESSEL::SetCrossSections (const VECTOR3 & cs) const

Defines the vessel’s cross-sectional areas, projected in the directions of the vessel’s principal axes.

Parameters:

¢s vector of cross-sectional areas of the vessel’s projection along the x-axis into yz-plane, along the
y-axis into the xz-plane, and along the z-axis into the xy plane, respectively [m“].

See also:

GetCrossSections

8.51.3.24 void VESSEL::GetPMI (VECTOR3 & pmi) const

Returns the vessel’s mass-normalised principal moments of inertia (PMI).

Parameters:

pmi Diagonal elements of the vessel’s inertia tensor [m2]

Note:

The inertia tensor describes the behaviour of a rigid body under angular acceleration. It is the analog
of the body’s mass in the linear case.

The values returned by this function are the diagonal elements of the inertia tensor, in the local vessel
frame of reference.

Orbiter’s definition of PMI is mass-normalised, that is, the values are divided by the total vessel mass.
The elements of pmi have the following meaning:

pmi, = M~ [o)+ 2)dF
pmi, = M7 [p(F)(F2 +2)dr
pmi; = MU [p(F)(2 + 2)dr

Orbiter assumes that off-diagonal elements can be neglected, that is, that the diagonal elements are
the principal moments of inertia. This is usually a good approximation when the vessel is sufficiently
symmetric with respect to its coordinate frame. Otherwise, a diagonalisation by rotating the local
frame may be required.

The shipedit utility in the SDK package allows to calculate the inertia tensor from a mesh, assuming a
homogeneous mass distribution.

See also:

SetPMI

8.51.3.25 void VESSEL::SetPMI (const VECTOR3 & pmi) const

Set the vessel’s mass-normalised principal moments of inertia (PMI).

Parameters:

pmi pmi Diagonal elements of the vessel’s inertia tensor [m2]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 366

Note:

The inertia tensor describes the behaviour of a rigid body under angular acceleration.
For more information and a definition of the PMI values, see GetPMI.

See also:

GetPMI

8.51.3.26 double VESSEL::GetGravityGradientDamping () const

Returns the vessel’s damping coefficient for gravity field gradient-induced torque.

Returns:

Torque damping coefficient (>= 0)

Note:

A nonspherical object in an inhomogeneous gravitational field experiences a torque. Orbiter calculates

this torque with
- 3um

MG - ?(R’O X EEO)

where mu = GM, G is the gravity constant, M is the reference body mass, m is the vessel mass, R is the
distance of the vessel to the reference body centre, RO is the unit vector towards the reference body,
and L is the mass-normalised inertia tensor (assumed diagonal).

This generates an undamped attitude oscillation in the vessel orbiting the reference body.

Damping may occur due to tidal deformation of the vessel, movement of liquids (fuel) etc. Orbiter
allows to introduce a damping term of the form

Mp = —awg

where wg is the angular velocity, and oo = dmr, with damping coefficient d, vessel mass m and vessel
radius r.
If gravity gradient torque has been disabled in the launchpad dialog, this function always returns 0.

See also:

SetGravityGradientDamping, GetEmptyMass, GetPMI

8.51.3.27 bool VESSEL::SetGravityGradientDamping (double damp) const

Sets the vessel’s damping coefficient for gravity field gradient-induced torque.

Parameters:

damp Torque damping coefficient.

Returns:

true if damping coefficient was applied, false if gravity gradient torque is disabled.

Note:

For a definition of the torque experienced by the vessel in an inhomogeneous gravity field, and the
damping term that can be applied, see GetGravityGradientDamping.

If gravity gradient torque has been disabled in the launchpad dialog, this function returns false and has
no other effect.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 367

See also:

GetGravityGradientDamping, SetEmptyMass, SetPMI

8.51.3.28 void VESSEL::GetStatus (VESSELSTATUS & status) const

Returns the vessel’s current status parameters in a VESSELSTATUS structure.

Parameters:

status structure receiving the current vessel status.

Note:
The VESSELSTATUS structure provides only limited information. Applications should normally use
GetStatusEx to obtain a VESSELSTATUSX structure which contains additional parameters.

See also:

VESSELSTATUS, GetStatusEx

8.51.3.29 void VESSEL::GetStatusEx (void * status) const

Returns the vessel’s current status parameters in a VESSELSTATUSX structure (version x >= 2).

Parameters:

status pointer to a VESSELSTATUSX structure

Note:

This method can be used with any VESSELSTATUSKx interface version supported by Orbiter. Cur-
rently only VESSELSTATUS? is supported.

The version field of the VESSELSTATUSx structure must be set by the caller prior to calling the
method, to tell Orbiter which interface version is required.

In addition, the caller must set the VS_FUELLIST, VS_THRUSTLIST and VS_DOCKINFOLIST bits
in the flag field, if the corresponding lists are required. Otherwise Orbiter will not produce these lists.
If VS_FUELLIST is specified and the fuel field is NULL, Orbiter will allocate memory for the list.
The caller is responsible for deleting the list after use. If the fuel field is not NULL, Orbiter assumes
that a list of sufficient length to store all propellant resources has been allocated by the caller.

The same applies to the thruster and dockinfo lists.

See also:

clbkSetStateEx, DefSetStateEx, VESSELSTATUS2

8.51.3.30 void VESSEL::DefSetState (const VESSELSTATUS x status) const
Set default vessel status parameters.

Invokes Orbiter’s vessel state initialisation with the standard status parameters provided via a VESSEL-
STATUS structure.

Parameters:

status structure containing vessel status parameters

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 368

Note:

The VESSELSTATUS structure contains only a limited set of parameters. Applications should nor-
mally use DefSetStateEx in combination with an extended VESSELSTATUSX structure.

See also:

VESSELSTATUS, DefSetStateEx, GetStatus

8.51.3.31 void VESSEL::DefSetStateEx (const void * status) const
Set default vessel status parameters.

Invokes Orbiter’s vessel state initialisation with the standard status parameters provided in a VESSELSTA-
TUSxX structure.

Parameters:

status pointer to a VESSELSTATUSX structure (x >= 2).

Note:
status must point to a VESSELSTATUSx structure. Currently only VESSELSTATUS? is supported,

but future Orbiter versions may introduce new interfaces.
Typically, this function will be called in the body of an overloaded VESSEL?2::clbkSetStateEx to en-
able default state initialisation.

See also:

VESSELSTATUS?2, GetStatusEx, VESSEL2::clbkSetStateEx

8.51.3.32 DWORD VESSEL::GetFlightStatus () const

Returns a bit flag defining the vessel’s current flight status.

Returns:

vessel status flags (see notes).

Note:
The following flags are currently defined:

* bit O:
— 0= vessel is active (in flight),
— 1 = vessel is inactive (landed)

* bit 1:
— 0 =simple vessel (not docked to anything),
— 1 = part of superstructure, (docked to another vessel)

8.51.3.33 double VESSEL::GetMass () const

Returns current (total) vessel mass.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 369

Returns:

Current vessel mass [kg].

Note:

The returned value does not include any docked or attached vessels.

See also:

SetEmptyMass, GetWeightVector, oapiGetMass

8.51.3.34 void VESSEL::GetGlobalPos (VECTOR3 & pos) const

Returns the vessel’s current position in the global reference frame.

Parameters:

pos Vector receiving position [m]

Note:

The global reference frame is the solar barycentric ecliptic system at ecliptic and equinox of J2000.0.

See also:

oapiGetGlobalPos, GetGlobal Vel, GetRelativePos

8.51.3.35 void VESSEL::GetGlobalVel (VECTOR3 & vel) const

Returns the vessel’s current velocity in the global reference frame.

Parameters:

vel Vector receiving velocity [m/s]

Note:

The global reference frame is the solar barycentric ecliptic system at ecliptic and equinox of J2000.0.

See also:

oapiGetGlobal Vel, GetGlobalPos, GetRelative Vel

8.51.3.36 void VESSEL::GetRelativePos (OBJHANDLE /Ref, VECTOR3 & pos) const

Returns the vessel’s current position with respect to another object.

Parameters:

hRef reference object handle

pos vector receiving position [m]

Note:

This function returns the vessel’s position relative to the position of the object defined by handle hRef.
Results are returned in the ecliptic frame (ecliptic and equinox of J2000.0).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 370

See also:

oapiGetRelativePos, GetRelative Vel, GetGlobalPos

8.51.3.37 void VESSEL::GetRelativeVel (OBJHANDLE hRef, VECTOR3 & vel) const

Returns the vessel’s current velocity relative to another object.

Parameters:

hRef reference object handle

vel vector receiving velocity [m/s]
Note:

This function returns the vessel’s velocity relative to the velocity of the object defined by handle hRef.
Results are returned in the ecliptic frame (ecliptic and equinox of J2000.0).

See also:

oapiGetRelative Vel, GetGlobal Vel, GetRelativePos

8.51.3.38 void VESSEL::GetAngularVel (VECTOR3 & avel) const

Returns the vessel’s current angular velocity components around its principal axes.

Parameters:

— avel vector receiving angular velocity components [rad/s]

Note:

The returned vector contains the angular velocities w,, w,,w, around the vessel’s x, y and z axes, in
the rotating vessel frame.

Because the change of the angular velocity components is is governed by Euler’s coupled differential
equations of rigid body motion, the values can fluctuate between the axes even if no torque is acting
on the vessel.

See also:

SetAngularVel, GetAngularAcc

8.51.3.39 void VESSEL::GetAngularAcc (VECTORS3 & aacc) const
Returns the vessel’s current angular acceleration components around its principal axes.
Parameters:

— aacc angular acceleration [rad/s2]

Note:

The returned vector contains the angular accelerations Ow,, /0t, 0w, /0t, Ow, /0t around the vessel’s
X, y and z axes, in the rotating vessel frame.

See also:

GetAngularVel, GetAngularMoment

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 371

8.51.3.40 void VESSEL::GetLinearMoment (VECTOR3 & F) const

Returns the linear force vector currently acting on the vessel.

Parameters:

— F force vector in vessel coordinates [N]

Note:

The returned vector is the vector sum of all forces (gravity, thrust, aerodynamic forces, etc.) currently
acting on the vessel.

See also:

GetAngularMoment

8.51.3.41 void VESSEL::GetAngularMoment (VECTOR3 & amom) const

Returns the sum of angular moments currently acting on the vessel.

Parameters:

— amom angular moment [Nm]

Note:

Given all force components F; acting on the vessel at positions r; , the angular moment is defined as
i
(note the left-handed reference frame in the order of operands for the cross product).

See also:

GetLinearMoment

8.51.3.42 void VESSEL::SetAngularVel (const VECTOR3 & avel) const

Applies new angular velocity to the vessel.

Parameters:

avel vector containing the new angular velocity components [rad/s]

Note:
The input vector defines the angular velocities around the vessel’s X, y and z axes. They refer to the
rotating vessel frame.

See also:

GetAngularVel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 372

8.51.3.43 void VESSEL::GetGlobalOrientation (VECTOR3 & arot) const

Returns the Euler angles defining the vessel’s orientation.

Parameters:

arot vector receiving the three Euler angles [rad]

Note:

The components of the returned vector arot = (v, 3,) are the angles of rotation [rad] around the x,y,z
axes in the global (ecliptic) frame to produce the rotation matrix R for mapping from the vessel’s local
frame of reference to the global frame of reference:

1 0 0 cosf 0 —sing cosy siny 0
R=1]0 cosa sina 0 1 0 —siny cosvy O
0 —sina cosa sin@ 0 cosf 0 0 1

See also:

SetGlobalOrientation, GetRotationMatrix

8.51.3.44 void VESSEL::SetGlobalOrientation (const VECTOR3 & arof) const

Sets the vessel’s orientation via Euler angles.

Parameters:

arot vector containing the set of Euler angles [rad]

Note:

Given the rotation matrix R which transforms from the local (vessel) frame to the global (ecliptic)
reference frame, the Euler angles expected by this method are defined as

o = atan2(R23, R33)
B = asin(Ry3)
Y = atan2(R12, Rll)

See also:

GetGlobalOrientation, SetRotationMatrix

8.51.3.45 bool VESSEL::GroundContact () const

Returns a flag indicating contact with a planetary surface.

Returns:
true indicates ground contact (at least one of the vessel’s touchdown reference points is in contact with
a planet surface).

See also:

SetTouchdownPoints

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 373

8.51.3.46 bool VESSEL::OrbitStabilised () const

Flag indicating whether orbit stabilisation is used for the vessel at the current time step.

Returns:

true indicates that the vessel’s state is currently updated by using the stabilisation algorithm, which
calculates the osculating elements with respect to the primary gravitational source, and treats all addi-
tional forces as perturbations.

Note:

A vessel switches to orbit stabilisation only if the user has enabled it in the launchpad dialog, and the
user-defined perturbation and time step limits are currently satisfied.

Stabilised mode reduces the effect of deteriorating orbits due to accumulating numerical errors in the
state vector propagation, but is limited in handling multiple gravitational sources.

See also:

GetElements

8.51.3.47 bool VESSEL::NonsphericalGravityEnabled () const

Flag for nonspherical gravity perturbations.

Indicates whether the vessel considers gravity field perturbations due to nonspherical planet shapes when
updating its state vectors for the current time step.

Returns:

true indicates that gravity perturbations due to nonspherical planet shapes are taken into account.

Note:

This function will always return false if the user has disabled the "Nonspherical gravity sources" option
in the Launchpad dialog.
If the user has enabled orbit stabilisation in the Launchpad, this function may sometimes return false
during high time compression, even if the nonspherical option has been selected. In such situations
Orbiter can exclude nonspherical perturbations to avoid numerical instabilities.

See also:

GetWeightVector

8.51.3.48 DWORD VESSEL::GetADCtrIMode () const

Returns aerodynamic control surfaces currently under manual control.

Returns:

Bit flags defining the current address mode for aerodynamic control surfaces.

Note:

The input mode defines which types of control surfaces can be manually controlled by the user.
The returned control mode contains bit flags as follows:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 374

¢ bit 0: elevator enabled/disabled
¢ bit 1 rudder enabled/disabled
¢ bit 2 ailerons enabled/disabled

Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates fully enabled.
Some vessel types may support not all, or not any, types of control surfaces.

See also:

SetADCtrIMode, CreateControlSurface, CreateControlSurface2, GetControlSurfacelLevel, SetCon-
trolSurfaceLevel

8.51.3.49 void VESSEL::SetADCtrIMode (DWORD mode) const

Configure manual input mode for aerodynamic control surfaces.

Parameters:

mode bit flags defining the address mode for aerodynamic control surfaces (see notes)

Note:
The mode parameter contains bit flags as follows:
* bit 0: enable/disable elevator
* bit 1: enable/disable rudder
* bit 2 enable/disable ailerons
Therefore, use mode = 0 to disable all control surfaces, mode = 7 to enable all control surfaces.

See also:

GetADCtrIMode, CreateControlSurface, CreateControlSurface2, GetControlSurfaceLevel, SetCon-
trolSurfaceLevel

8.51.3.50 bool VESSEL::ActivateNavmode (int mode)

Activates one of the automated orbital navigation modes.

Parameters:

mode navigation mode identifier (see Navigation mode identifiers)

Returns:

true if the specified navigation mode could be activated, false if not available or active already.

Note:

Navmodes are high-level navigation modes which involve e.g. the simultaneous and timed engagement
of multiple attitude thrusters to get the vessel into a defined state. Some navmodes terminate automat-
ically once the target state is reached (e.g. killrot), others remain active until explicitly terminated
(hlevel). Navmodes may also terminate if a second conflicting navmode is activated.

See also:

Navigation mode identifiers, DeactivateNavmode, ToggleNavmode, GetNavmodeState

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 375

8.51.3.51 bool VESSEL::DeactivateNavmode (int mode)

Deactivates an automated orbital navigation mode.

Parameters:

mode navigation mode identifier (see Navigation mode identifiers)

Returns:

true if the specified navigation mode could be deactivated, false if not available or inactive already.

See also:

Navigation mode identifiers, ActivateNavmode, ToggleNavmode, GetNavmodeState

8.51.3.52 bool VESSEL::ToggleNavmode (int mode)

Toggles a navigation mode on/off.

Parameters:

mode navigation mode identifier (see Navigation mode identifiers)

Returns:

true if the specified navigation mode could be changed, false if it remains unchanged.

See also:

Navigation mode identifiers, ActivateNavmode, DeactivateNavmode, GetNavmodeState

8.51.3.53 bool VESSEL::GetNavmodeState (int mode)

Returns the current active/inactive state of a navigation mode.

Parameters:

mode navigation mode identifier (see Navigation mode identifiers)
Returns:

true if the specified navigation mode is active, false otherwise.

See also:

Navigation mode identifiers, ActivateNavmode, DeactivateNavmode, ToggleNavmode

8.51.3.54 const OBJHANDLE VESSEL::GetGravityRef () const

Returns a handle to the main contributor of the gravity field at the vessel’s current position.

Returns:

Handle for gravity reference object.

Note:

All parameters calculated by functions in this section refer to the gravity reference object, unless
explicitly stated otherwise.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 376

8.51.3.55 OBJHANDLE VESSEL::GetElements (ELEMENTS & el, double & mjd_ref) const
Returns osculating orbital elements.

Calculates the set of osculating elements at the current time with respect to the dominant gravitational
source.

Parameters:

— el current osculating elements relative to dominant gravity source, in ecliptic frame of reference.

— myjd_ref reference date (in Modified Julian Date format) to which the returned el.L. (mean longi-
tude) value refers.

Returns:

Handle of reference object. NULL indicates failure (no elements available).

Note:

This method will return the mean longitude at a fixed reference date, so the value will not change over
time, unless the orbit itself changes.
For extended functionality, see version 2 of GetElements.

See also:

Basics of orbital mechanics, ELEMENTS, GetElements(OBJHANDLE.ELEMENTS&,ORBITPARAM:,double,int)const,
SetElements

8.51.3.56 bool VESSEL::GetElements (OBJHANDLE hRef, ELEMENTS & el, ORBITPARAM
prm = 0, double mjd_ref = 0, int frame = FRAME_ECL) const

Returns osculating elements and additional orbit parameters.

Returns the current osculating elements for the vessel. This version has an extended functionality: it
allows to specify an arbitrary celestial body as reference object, an arbitrary reference time, and can return
elements either in the ecliptic or equatorial frame of reference.

Parameters:

hRef reference body handle
el current osculating elements relative to hRef
prm additional orbital parameters

myjd_ref reference data (in Modified Julian Date format) to which the el.L. (mean longitude) value
refers.

Jrame orientation of reference frame (see notes)

Returns:

Currently always true.

Note:

For an overview of orbital parameters, see Basics of orbital mechanics.

This version returns the elements with respect to an arbitrary celestial body, even if that body is not
the main source of the gravity field acting on the vessel. If hRef==NULL, the default reference body
is used.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 377

If the prm pointer is not set to NULL, the ORBITPARAM structure it points to will be filled with
additional orbital parameters derived from the primary elements.

All parameters returned in the prm structure refer to the current date, rather than the reference date
mjd_ref. Therefore, the values of el.L. and prm->MnL can be different.

Unlike GetElements(ELEMENTS &,double&), mjd_ref is a user-provided input parameter which spec-
ifies to which date the returned el.L (mean longitude) value will refer. An exception is mjd_ref = 0,
which is interpreted as the current time (equivalent to mjd_ref = oapiGetSimMIJD()).

The frame parameter can be set to one of the following:

* FRAME_ECL: returned elements are expressed in the ecliptic frame (epoch J2000).

* FRAME_EQU: returned elements are expressed in the equatorial frame of the reference object
(hRef).

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetEle-
ments(ELEMENTS &,double&)const, SetElements

8.51.3.57 bool VESSEL::SetElements (OBJHANDLE FkRef, const ELEMENTS & el, ORBIT-
PARAM x* prm = 0, double mjd_ref = 0, int frame = FRAME_ECL) const

Set vessel state (position and velocity) by means of a set of osculating orbital elements.

Parameters:

hRef reference body handle
el set of elements to be applied
prm secondary orbital parameters

myjd_ref reference date (in Modified Julian Date format) to which the el.L. (mean longitude) value
refers

Jframe orientation of reference frame (see notes)

Returns:

If the vessel position resulting from applying the elements would be located below the surface of the
reference body, the method does nothing and returns false. Otherwise it returns true.

Note:

This method resets the vessel’s position and velocity according to the specified orbital elements.

If the prm pointer is not set to NULL, the ORBITPARAM structure it points to will be filled with sec-
ondary orbital parameters derived from the primary elements el. Note that this is an output parameter,
i.e. the resulting vessel state will not be influenced by initialising this structure prior to the function
call.

All parameters returned in the prm structure refer to the current date, rather than the reference date
mjd_ref. Therefore, the values of el.L. and prm->MnL can be different.

The elements can be supplied either in terms of the ecliptic frame (frame = FRAME_ECL) or in the
equatorial frame of the reference body (frame = FRAME_EQU).

mjd_ref is an input parameter which defines the date to which the el.L (mean longitude) value refers.
An exception is mjd_ref = 0, which is interpreted as the current time (equivalent to mjd_ref = oapiGet-
SimMID()).

Calling SetElements will always put a vessel in freeflight mode, even if it had been landed before.
Currently, SetElements doesn’t check for validity of the provided elements. Setting invalid elements,
or elements which put the vessel below a planetary surface will produce undefined results.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 378

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetEle-
ments(ELEMENTS&,double&)const, GetElements(OBJHANDLE,ELEMENTS &,ORBITPARAM:,double,int)const

8.51.3.58 OBJHANDLE VESSEL::GetSMi (double & smi) const

Returns the magnitude of the semi-minor axis of the current osculating orbit.

Parameters:

— smi semi-minor axis [m]

Returns:

Handle of reference object, relative to which the orbit is calculated. NULL indicates failure (no orbit
information available)

Note:

The semi-minor axis is the smallest semi-diameter of the orbit ellipse (see Basics of orbital mechanics).

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetElements

8.51.3.59 OBJHANDLE VESSEL::GetArgPer (double & arg) const

Returns argument of periapsis of the current osculating orbit.

Parameters:

— arg argument of periapsis for current orbit [rad]

Returns:
Handle of reference body, relative to which the orbit is calculated. NULL indicates failure (no orbit
information available)

Note:
The argument of periapsis is the angle between periapsis and the ascending node (see The orbit in

space).

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetPeDist, GetApDist, GetElements

8.51.3.60 OBJHANDLE VESSEL::GetPeDist (double & pedist) const

Returns the periapsis distance of the current osculating orbit.

Parameters:

— pedist periapsis distance [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 379

Returns:

Handle of reference body, relative to which the orbit is calculated. NULL indicates failure (no orbit
information available)

Note:

The periapsis distance is the smallest radius of the orbit (see Basics of orbital mechanics).

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetApDist, GetArgPer, GetElements

8.51.3.61 OBJHANDLE VESSEL::GetApDist (double & apdist) const

Returns the apoapsis distance of the current osculating orbit.

Parameters:

— apdist apoapsis distance [m]

Returns:

Handle of reference body, relative to which the orbit is calculated. NULL indicates failure (no orbit
information available)

Note:

the apoapsis distance is the largest radius of the orbit (see Basics of orbital mechanics).

See also:

Basics of orbital mechanics, ELEMENTS, ORBITPARAM, GetPeDist, GetArgPer, GetElements

8.51.3.62 const OBJHANDLE VESSEL::GetSurfaceRef () const

Returns a handle to the surface reference object (planet or moon).

Returns:

Surface reference object handle

Note:

The surface reference is the planet or moon whose surface is closest to the current vessel position. All
methods in this group refer to this celestial body.

8.51.3.63 double VESSEL::GetAltitude () const

Returns the altitude above the surface of the surface reference body.

Returns:

Altitude [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 380

Note:

Currently all celestial bodies are assumed to be spheres. This method therefore returns the distance to
the centre of the reference body minus the reference body radius.
The reference body is the planet or moon whose surface is closest to the current vessel position (i.e.
the body with minimal altitude).

See also:

GetSurfaceRef

8.51.3.64 double VESSEL::GetPitch () const

Returns the current pitch angle with respect to the local horizon.

Returns:

pitch angle [rad]

Note:
The pitch angle p is defined as
s
p= 9~ q
where ¢ is the angle between the vessel’s positive z axis (forward direction) and the normal of the local
horizon.
See also:

GetSurfaceRef, GetBank, GetYaw

8.51.3.65 double VESSEL::GetBank () const

Returns the current bank (roll) angle with respect to the local horizon.

Returns:

bank angle [rad]

Note:

The bank angle b is defined as the angle between the vessel’s positive y axis (up direction) and the
projection of the normal of the local horizon into the x-y plane.

See also:

GetSurfaceRef, GetPitch, GetYaw

8.51.3.66 double VESSEL::GetYaw () const

Returns the current yaw angle with respect to the local horizon.

Returns:

yaw angle [rad]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 381

Note:

The yaw angle y is defined as the angle between the the projection of the vessel’s positive z axis
(forward direction) into the horizon plane, and the local horizon "north" direction.

See also:

GetSurfaceRef, GetPitch, GetBank

8.51.3.67 OBJHANDLE VESSEL::GetEquPos (double & longitude, double & latitude, double &
radius) const

Returns vessel’s current equatorial position with respect to the closest planet or moon.

Parameters:

— longitude longitude coordinate [rad]
— latitude latitude coordinate [rad]

— radius distance from planet centre [m]

Returns:

Handle to reference body to which the parameters refer. NULL indicates failure (no reference body
available).

See also:

GetSurfaceRef

8.51.3.68 const OBJHANDLE VESSEL::GetAtmRef () const
Returns a handle to the reference body for atmospheric calculations.
Returns:

Handle for the celestial body whose atmosphere the vessel is currently moving through, or NULL if
the vessel is not inside an atmosphere.

See also:

GetAtmTemperature, GetAtmDensity, GetAtmPressure

8.51.3.69 double VESSEL::GetAtmTemperature () const
Returns ambient atmospheric temperature at current vessel position.
Returns:

Ambient temperature [K] at current vessel position.
Note:

This function returns 0 if the vessel is outside all planetary atmospheric hulls, as defined by the planets’
AtmAltLimit parameters.

See also:

GetAtmDensity, GetAtmPressure, GetAtmRef

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 382

8.51.3.70 double VESSEL::GetAtmDensity () const

Returns atmospheric density at current vessel position.

Returns:

Atmospheric density [kg/m3] at current vessel position.

Note:

This function returns 0 if the vessel is outside all planetary atmospheric hulls, as defined by the planets’
AtmAltLimit parameters.

See also:

GetAtmPressure, GetAtmTemperature, GetAtmRef

8.51.3.71 double VESSEL::GetAtmPressure () const

Returns static atmospheric pressure at current vessel position.

Returns:

Static atmospheric pressure [Pa] at current vessel position.

Note:

i

This function returns 0 if the vessel is outside all planetary atmospheric hulls, as defined by the planets
AtmAltLimit parameters.

See also:

GetDynPressure, GetAtmDensity, GetAtmTemperature, GetAtmRef

8.51.3.72 double VESSEL::GetDynPressure () const

Returns the current dynamic pressure for the vessel.

Returns:

Current vessel dynamic pressure [Pa].

Note:

The dynamic pressure is defined as
1
= —pV?
a=35p

with density p and airflow velocity V. Dynamic pressure is an important aerodynamic parameter.

See also:

GetAtmPressure, GetAtmRef

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 383

8.51.3.73 double VESSEL::GetMachNumber () const

Returns the vessel’s current Mach number.

Returns:

Mach number - the ratio of current freestream airflow velocity over speed of sound.

Note:
The speed of sound depends on several parameters, e.g. atmospheric composition and temperature.
The Mach number can therefore vary even if the airspeed is constant.

See also:

GetAirspeed, GetAtmRef

8.51.3.74 double VESSEL::GetAirspeed () const

Returns magnitude of the freestream airflow velocity vector measured in ship-relative coordinates.

Returns:

Magnitude of airflow velocity vector [m/s]

Note:

This function also works in the absence of an atmosphere. At low altitudes, the returned value is a
ground-speed equivalent. At high altitudes the value diverges from ground speed, since an atmospheric
drag effect is assumed.

This function returns the length of the vector returned by GetShipAirspeedVector().

See also:

GetShipAirspeed Vector, GetMachNumber, GetAtmRef

8.51.3.75 bool VESSEL::GetHorizonAirspeedVector (VECTOR3 & v) const

Returns the airspeed vector in local horizon coordinates.

Parameters:

— v airspeed vector on exit [m/s]

Returns:

false indicates error

Note:
This method returns the airspeed vector in the reference frame of the local horizon. x = longitudinal
component, y = vertical component, z = latitudinal component.

See also:

GetAirspeed, GetShipAirspeed Vector

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 384

8.51.3.76 bool VESSEL::GetShipAirspeedVector (VECTOR3 & v) const

Returns the airspeed vector in vessel coordinates.

Parameters:

— v airspeed vector on exit [m/s]

Returns:

false indicates error

Note:

This method returns the airspeed vector in local ship coordinates. x = lateral component, y = vertical
component, z = longitudinal component.

See also:

GetAirspeed, GetHorizonAirspeed Vector

8.51.3.77 double VESSEL::GetAOA () const

Returns the current angle of attack.

Returns:

AOA (angle of attack) value [rad] in the range -Pi ... +Pi.

Note:
The AOA value is defined as the angle between the vessel’s positive z axis and the flight path direction,

projected into the yz-plane of the vessel’s local coordinate system.

See also:

GetSlipAngle

8.51.3.78 double VESSEL::GetSlipAngle () const

Returns the lateral (yaw) angle between the velocity vector and the vessel’s longitudinal axis.

Returns:

slip angle [rad] in the range -Pi ... +Pi.

Note:
The slip angle is defined as the angle between the vessel’s positive z axis and the flight path direction,
projected into the xz-plane of the vessel’s local coordinate system.

See also:

GetAOA

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 385

8.51.3.79 void VESSEL::CreateAirfoil (AIRFOIL_ORIENTATION align, const VECTOR3 & ref,
AirfoilCoeffFunc cf, double ¢, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

Parameters:

align orientation of the lift vector (LIFT_VERTICAL or LIFT_HORIZONTAL)
ref centre of pressure in vessel coordinates [m]
¢f pointer to coefficient callback function (see notes)

¢ airfoil chord length [m]
S wing area [m2]

A wing aspect ratio

Note:

A vessel can define multiple airfoils (for wings, main body, tail stabilisators, etc.). In general, it should
define at least one vertical and one horizontal component.

Airfoil definitions for wings and horizontal stabilisers set align to LIFT_VERTICAL. Vertical stabilis-
ers (vertical tail fin, etc.) set align to LIFT_HORIZONTAL.

The centre of pressure is the point at which the lift and drag forces generated by the airfoil are applied
to the vessel. Together with the moment coefficient it defines the aerodynamic stability of the vessel.
Usually the CoP will be aft of the CG, and the moment coefficient will have a negative slope around
the trim angle of attack.

The AirfoilCoeffFunc is a callback function which must be supplied by the module. It calculates the
lift, moment and drag coefficients for the airfoil. It has the following interface:

void AirfoilCoeffFunc (double aoa, double M, double Re,
double *xcl, double *cm, double =xcd)

and returns the lift coefficient (c/), moment coefficient (cm) and drag coefficient (cd) as a function of
angle of attack aoa [rad], Mach number M and Reynolds number Re. Note that aoa can range over
the full circle (-pi to pi). For vertical lift components, aoa is the pitch angle of attack (a), while for
horizontal components it is the yaw angle of attack (b).

If the wing area S is set to 0, then Orbiter uses the projected vessel cross sections to define a reference
area. Let (vx , Vy , Vz) be the unit vector of freestream air flow in vessel coordinates. Then the
reference area is calculated as S = vz Cz + vy Cy for a LIFT_VERTICAL airfoil, and as S = vz Cz +
vx Cx for a LIFT_HORIZONTAL airfoil, where Cx , Cy , Cz are the vessel cross-sections in x, y and
z direction, respectively.

The wing aspect ratio is defined as defined as A = b2 /S with wing span b.

A vessel should typically define its airfoils in the VESSEL2::clbkSetClassCaps callback function. If
no airfoils are defined, Orbiter will fall back to its legacy drag calculation, using the cw coefficients
defined in SetCW. Legacy lift calculation is no longer supported.

For more details, see the Programmer’s Guide.

See also:

CreateAirfoil2, CreateAirfoil3, EditAirfoil, DelAirfoil

8.51.3.80 AIRFOILHANDLE VESSEL::CreateAirfoil2 (AIRFOIL_ORIENTATION align, const
VECTORS3 & ref, AirfoilCoeffFunc cf, double ¢, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 386

Parameters:

align orientation of the lift vector (LIFT_VERTICAL or LIFT_HORIZONTAL)
ref centre of pressure in vessel coordinates [m]

¢f pointer to coefficient callback function (see notes)

¢ airfoil chord length [m]

S wing area [m2]
A wing aspect ratio
Returns:

Handle for the new airfoil.
Note:

This method is identical to CreateAirfoil, but returns a handle which can be used to identify the airfoil
later.

See also:

CreateAirfoil, CreateAirfoil3, EditAirfoil, DelAirfoil

8.51.3.81 AIRFOILHANDLE VESSEL::CreateAirfoil3 (AIRFOIL_ORIENTATION align, const
VECTORS3 & ref, Airfoil CoeffFuncEx cf, void * context, double c, double S, double A) const

Creates a new airfoil and defines its aerodynamic properties.

Parameters:

align orientation of the lift vector (LIFT_VERTICAL or LIFT_HORIZONTAL)
ref centre of pressure in vessel coordinates [m]

¢f pointer to coefficient callback function (see notes)

context pointer to data block passed to cf callback function

¢ airfoil chord length [m]

S wing area [m2]
A wing aspect ratio
Returns:

Handle for the new airfoil.
Note:

This method is an extension to CreateAirfoil2, using a more versatile coefficient callback function.
AirfoilCoeffFuncEx has the following interface:

void AirfoilCoeffFuncEx (VESSEL *v, double aoca, double M, double Re,
void *context, double xcl, double *cm, double =xcd)

where v is a pointer to the calling vessel instance, and context is the pointer passed to CreateAirfoil3. It
can be used to make available to the callback function any additional parameters required to calculate
the lift and drag coefficients. All other parameters are identical to AirfoilCoeffFunc (see CreateAirfoil).

See also:

CreateAirfoil, CreateAirfoil2, EditAirfoil, DelAirfoil

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 387

8.51.3.82 bool VESSEL::GetAirfoilParam (AIRFOILHANDLE hAirfoil, VECTORS3 x ref, Airfoil-
CoeffFunc * cf, void ** context, double * ¢, double * S, double x A) const

Returns the parameters of an existing airfoil.

Parameters:

«— hAirfoil airfoil handle

— ref pointer to centre of pressure [m]

— ¢f pointer to aerodynamic coefficient callback function
— ¢ pointer to chord length [m]

— § pointer to wing area [In2]

— A pointer to wing aspect ratio

— context pointer to callback context data

Returns:

false indicates failure

Note:

This function copies the airfoil parameters into the variables referenced by the pointers in the parameter
list.
Any pointers set to NULL are ignored.

VECTOR3 cop;

AirfoilCoeffFunc cf;

void *context;

double c, S, A;

v->GetAirfoilParam(hAirfoil, &cop, &cf, &context, &c, &S, &A) ;

See also:

CreateAirfoil, CreateAirfoil2, CreateAirfoil3, EditAirfoil, DelAirfoil

8.51.3.83 void VESSEL::EditAirfoil AIRFOILHANDLE hAirfoil, DWNORD flag, const VECTOR3
& ref, Airfoil CoeffFunc cf, double ¢, double S, double A) const

Resets the parameters of an existing airfoil definition.

Parameters:

hAirfoil airfoil handle

flag bitflags to define which parameters to reset (see notes)
ref new centre of pressure

¢f new callback function for coefficient calculation

¢ new chord length [m]

S new wing area [m2]

A new wing aspect ratio

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 388

Note:

This function can be used to modify the parameters of a previously created airfoil.
flag contains the bit flags defining which parameters will be modified. It can be any combination of
the following:

0x01 modify force attack point

0x02 modify coefficient callback function
0x04 modify chord length

0x08 modify wing area

0x10 modify wing aspect ratio

If the airfoil identified by hAirfoil was created with CreateAirfoil3, and you want to modifiy the call-
back function, then ¢f must point to a function with AirfoilCoeffFuncEx interface, and must be cast to
Airfoil CoeffFunc when passed to EditAirfoil.

See also:

CreateAirfoil2, Create Airfoil3

8.51.3.84 bool VESSEL::DelAirfoil (AIRFOILHANDLE hAirfoil) const

Deletes a previously defined airfoil.

Parameters:

hAirfoil airfoil handle

Returns:

false indicates failure (invalid handle)

Note:
If all the vessel’s airfoils are deleted without creating new ones, Orbiter reverts to the obsolete legacy
atmospheric flight model.

See also:

CreateAirfoil2, CreateAirfoil3, ClearAirfoilDefinitions

8.51.3.85 void VESSEL::ClearAirfoilDefinitions () const

Removes all airfoils currently defined for the vessel.

Note:

This function is useful if a vessel needs to re-define all its airfoil definitions as a result of a structural
change.

After clearing all airfoils, you should generate new ones. Even wingless objects (such as capsules)
should define their aerodynamic behaviour by airfoils (see CreateAirfoil). Vessels without airfoil defi-
nitions revert to the obsolete legacy atmospheric flight model.

See also:

DelAirfoil, CreateAirfoil, CreateAirfoil2, CreateAirfoil3

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 389

8.51.3.86 void VESSEL::CreateControlSurface (AIRCTRL_TYPE #ype, double area, double dCl,
const VECTORS3 & ref, int axis = ATRCTRL_AXIS_AUTO, UINT anim = (UINT) —-1) const

Creates an aerodynamic control surface.

Parameters:

type control surface type (see Aerodynamic control surface types)
area control surface area [m2]

dCl shift in lift coefficient achieved by fully extended control
ref centre of pressure in vessel coordinates [m]

axis rotation axis (see Control surface axis orientation)

anim animation reference, if applicable

Note:

Control surfaces include elevators, rudders, ailerons, flaps, etc. They can be used to control the vessel
during atmospheric flight.

When selecting automatic axis control (axis=AIRCTRL_AXIS_AUTO), the following axes will be
used for given control surfaces:

Elevator XPOS
Rudder YPOS
Aileron XPOS if ref.x > 0, XNEG otherwise
Flap XPOS

For ailerons, at least 2 control surfaces should be defined (e.g. on left and right wing) with opposite
rotation axes, to obtain the angular momentum for banking the vessel.

Elevators typically use the XPOS axis, assuming the that the centre of pressure is aft of the centre of
gravity. If pitch control is provided by a canard configuration ahead of the CoG, XNEG should be
used instead.

The centre of pressure defined by the ref parameter is the point at which the lift and drag forces for the
control surface are applied.

To improve performance, multiple control surfaces may sometimes be defined by a single call to Cre-
ateControlSurface. For example, the elevator controls on the left and right wing may be combined by
setting a centered attack point.

Control surfaces can be animated, by passing an animation reference to CreateControlSurface. The
animation reference is obtained when creating the animation with CreateAnimation. The animation
should support a state in the range from 0 to 1, with neutral surface position at state 0.5.

See also:

CreateControlSurface2, CreateControlSurface3

8.51.3.87 CTRLSURFHANDLE VESSEL::CreateControlSurface2 (AIRCTRL_TYPE type, dou-
ble area, double dCl, const VECTOR3 & ref, int axis = AIRCTRL_AXIS_AUTO, UINT anim =
(UINT) -1) const

Creates an aerodynamic control surface and returns a handle.

Parameters:

type control surface type (see Aerodynamic control surface types)
area control surface area [m2]

dCl shift in lift coefficient achieved by fully extended control

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 390

ref centre of pressure in vessel coordinates [m]
axis rotation axis (see Control surface axis orientation)

anim animation reference, if applicable

Returns:

Control surface handle.

Note:

This function is identical to CreateControlSurface, but it returns a handle for later reference (e.g. to
delete it with DelControlSurface)
It is equivalent to CreateControlSurface3 with delay = 1.

See also:

CreateControlSurface, CreateControlSurface3, DelControlSurface

8.51.3.88 CTRLSURFHANDLE VESSEL::CreateControlSurface3 (AIRCTRL_TYPE #ype, dou-
ble area, double dCI, const VECTOR3 & ref, int axis = ATRCTRL_AXIS_AUTO, double delay = 1.0,
UINT anim = (UINT) —1) const

Creates an aerodynamic control surface and returns a handle.

Parameters:

type control surface type (see Aerodynamic control surface types)
area control surface area [m2]

dCl shift in lift coefficient achieved by fully extended control
ref centre of pressure in vessel coordinates [m]

axis rotation axis (see Control surface axis orientation)
delay response delay setting [s]

anim animation reference, if applicable

Returns:

Control surface handle.

Note:

This function is identical to CreateControlSurface2 except that it specifies an additional *delay’ param-
eter which defines the response delay for the surface (the time it takes to move from neutral to fully
deployed). Setting delay=0 provides direct response.

See also:

CreateControlSurface, CreateControlSurface2

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 391

8.51.3.89 bool VESSEL::DelControlSurface (CTRLSURFHANDLE hCtriSurf) const

Deletes a previously defined aerodynamic control surface.

Parameters:

hCtriSurf control surface handle

Returns:

false indicates error (invalid handle)

See also:

CreateControlSurface?2, CreateControlSurface3

8.51.3.90 void VESSEL::ClearControlSurfaceDefinitions () const

Removes all aerodynamic control surfaces.

Note:
This function is useful if the vessel has to re-define all its control surfaces (e.g. as a result of structural
change).

See also:

DelControlSurface

8.51.3.91 void VESSEL::SetControlSurfacelLevel (AIRCTRL_TYPE #ype, double level) const

Updates the position of an aerodynamic control surface.

Parameters:

type control surface type (see Aerodynamic control surface types)

level new control surface position [-1...+1]

Note:

Parameter level defines a target state for the surface. Control surfaces generally require a finite amount
of time to move from the current to the target state.

This method affects the permanent setting of the control surface, while manual input via keyboard or
joystick affects the transient setting. The total target state of the control surface is the sum of both
settings, clamped to the range [-1...+1]

See also:

SetControlSurfaceLevel(AIRCTRL_TYPE,double,bool)const, GetControlSurfacelevel

8.51.3.92 void VESSEL::SetControlSurfaceLevel (AIRCTRL_TYPE fype, double level, bool direct)
const

Updates the position of an aerodynamic control surface.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 392

Parameters:

type control surface type (see Aerodynamic control surface types)
level new control surface position [-1...+1]

direct application mode

Note:

If parameter direct==true then the specified level is applied directly, bypassing any reaction delays
defined for the control surface.
If parameter direct==false then this method is equivalent to SetControlSurfaceLevel(AIRCTRL_-
TYPE,double)const .
Bypassing the response delay can be useful for debugging autopilots etc. but should be avoided in
production code, since it is unphysical. If you want to simulate fast-responding controls, create the
surface with a small delay setting instead.

See also:

SetControlSurfaceLevel(AIRCTRL_TYPE,double)const, CreateControlSurface3

8.51.3.93 double VESSEL::GetControlSurfaceLevel (AIRCTRL_TYPE #ype) const

Returns the current position of a control surface.

Parameters:

type control surface type (see Aerodynamic control surface types)

Returns:

Current position of the surface [-1..+1]

Note:
This method returns the actual, not the rarget position. Due to finite response time, it may therefore
not return the value set by a preceeding call to SetControlSurfaceLevel.

See also:

SetControlSurfaceLevel

8.51.3.94 void VESSEL::CreateVariableDragElement (double * drag, double factor, const VEC-
TOR3 & ref) const

Attaches a modifyable drag component to the vessel.

Parameters:
drag pointer to external drag control parameter
Jactor drag magnitude scaling factor

ref drag force attack point [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 393

Note:

This method is useful for defining drag produced by movable parts such as landing gear and airbrakes.
The magnitude of the drag force is calculated as

D:deOo

where d is the control parameter, f is the scale factor, and ¢ is the freestream dynamic pressure.

The value of d (the parameter pointed to by drag) should be set to values between 0 (no drag) and 1
(full drag). Any changes to the value have immediate effect.

Depending on the attack point, the applied drag force may create torque in addition to linear force.

See also:

ClearVariableDragElements

8.51.3.95 void VESSEL::ClearVariableDragElements () const

Removes all drag elements defined with CreateVariableDragElement.

See also:

CreateVariableDragElement

8.51.3.96 void VESSEL::GetCW (double & cw_z_pos, double & cw_z_neg, double & cw_x, double
& cw_y) const

Returns the vessel’s wind resistance coefficients (legacy flight model only).

Parameters:

cw_z_pos resistance coefficient in positive z direction (forward)
cw_z_neg resistance coefficient in negative z direction (back)
cw_x resistance coefficient in lateral direction (left/right)

cw_y resistance coefficient in vertical direction (up/down)

Note:

[Legacy aerodynamic flight model only]

The cw coefficients are only used by the legacy flight model (if no airfoils are defined). In the presence
of airfoils, drag calculations are performed on the basis of the airfoil parameters.

The first value (cw_z_pos) is the coefficient used if the vessel’s airspeed z-component is positive
(vessel moving forward). The second value is used if the z-component is negative (vessel moving
backward).

Lateral and vertical components are assumed symmetric.

See also:

SetCW, CreateAirfoil

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 394

8.51.3.97 void VESSEL::SetCW (double cw_z_pos, double cw_z_neg, double cw_x, double cw_y)
const

Set the vessel’s wind resistance coefficients along its axis directions.

Parameters:
cw_z_pos coefficient in positive z direction (forward)
cw_z_neg coefficient in negative z direction (back)
cw_x coefficient in lateral direction (left/right)

cw_y coefficient in vertical direction (up/down)

Note:

[Legacy aerodynamic flight model only]

The cw coefficients are only used by the legacy flight model (if no airfoils are defined). In the presence
of airfoils, drag calculations are performed on the basis of the airfoil parameters.

The first value (cw_z_pos) is the coefficient used if the vessel’s airspeed z-component is positive
(vessel moving forward). The second value is used if the z-component is negative (vessel moving
backward).

Lateral and vertical components are assumed symmetric.

See also:

GetCW, CreateAirfoil

8.51.3.98 double VESSEL::GetWingAspect () const

2

Returns the vessel’s wing aspect ratio (wingspan“ / wing area).

Returns:

Wing aspect ratio (wingspan2 / wing area)

Note:

[Legacy aerodynamic flight model only]
The aspect ratio returned by this function is only used by the legacy aerodynamic flight model. If the
vessel uses the new flight model (i.e. defines at least one airfoil), then this value is ignored, and the
airfoil parameters are used instead.
The aspect ratio is used in the calculation of induced drag.

See also:

SetWingAspect, GetWingEffectiveness, CreateAirfoil

8.51.3.99 void VESSEL::SetWingAspect (double aspect) const

Set the wing aspect ratio (wingspan2 / wing area).

Parameters:

aspect wing aspect ratio

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 395

Note:

[Legacy aerodynamic flight model only]

This function defines the wing aspect ratio for the legacy flight model. If the vessel uses the new flight
model (i.e. defines at least one airfoil), then this value is ignored, and the airfoil parameters are used
instead.

The aspect ratio is used in the calculation of induced drag.

See also:

GetWingAspect, SetWingEffectiveness, CreateAirfoil

8.51.3.100 double VESSEL::GetWingEffectiveness () const

Returns the wing form factor used in aerodynamic calculations.

Returns:

wing form factor

Note:

[Legacy aerodynamic flight model only]

The form factor returned by this function is only used by the legacy aerodynamic flight model. If the
vessel uses the new flight model (i.e. defines at least one airfoil), then this value is ignored, and the
airfoil parameters are used instead.

The form factor, together with the aspect ratio, determines the amount of induced drag for given lift.
Higher values of the form factor result in lower drag.

Typical values are ~3.1 for elliptic wings, ~2.8 for tapered wings, and ~2.5 for rectangular wings.
Default is 2.8.

See also:

SetWingEffectiveness, GetWingAspect, CreateAirfoil

8.51.3.101 void VESSEL::SetWingEffectiveness (double eff) const

Set the wing form factor for aerodynamic lift and drag calculations.

Parameters:

eff wing form factor

Note:

[Legacy aerodynamic flight model only]

This function defines the wing form factor for the legacy flight model. If the vessel uses the new flight
model (i.e. defines at least one airfoil), then this value is ignored, and the airfoil parameters are used
instead.

The form factor, together with the aspect ratio, determines the amount of induced drag for given lift.
Higher values of the form factor result in lower drag.

Typical values for eff are: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for rectangular wings.

See also:

GetWingEffectiveness, SetWingAspect, CreateAirfoil

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 396

8.51.3.102 void VESSEL::GetRotDrag (VECTORS3 & rd) const

Returns the vessel’s atmospheric rotation resistance coefficients.

Parameters:

rd drag coefficients for rotation around the 3 vessel axes

Note:

rd contains the components ry,y,z against rotation around the local vessel axes in atmosphere, where
angular deceleration due to atmospheric friction is defined as ay,y; = -wx,y,z ¢ Sy rxyz Wwith
angular velocity w, dynamic pressure ¢ and reference surface Sy , defined by the vessel’s cross section
projected along the vertical (y) axis.

See also:

SetRotDrag

8.51.3.103 void VESSEL::SetRotDrag (const VECTOR3 & rd) const

Set the vessel’s atmospheric rotation resistance coefficients.

Parameters:

rd drag coefficients for rotation around the 3 vessel axes

Note:

rd contains the components ry,y,z against rotation around the local vessel axes in atmosphere, where
angular deceleration due to atmospheric friction is defined as ay,y,z = -wx,y,z ¢ Sy rxyz with
angular velocity w, dynamic pressure g and reference surface Sy , defined by the vessel’s cross section
projected along the vertical (y) axis.

See also:

GetRotDrag

8.51.3.104 double VESSEL::GetPitchMomentScale () const

Returns the scaling factor for the pitch moment.

Returns:

pitch moment scale factor

Note:

The pitch moment is the angular moment around the vessel’s lateral (x) axis occurring in atmospheric
flight. It works toward reducing the pitch angle (angle of attack).

The larger the scaling factor, the stronger the effect becomes ("stiff handling")

This value is only used with the old aerodynamic flight model, i.e. if no airfoils have been defined.

See also:

SetPitchMomentScale, GetYawMomentScale, CreateAirfoil

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 397

8.51.3.105 void VESSEL::SetPitchMomentScale (double scale) const

Sets the scaling factor for the pitch moment.

Parameters:

scale scale factor for pitch moment

Note:

The pitch moment is the angular moment around the vessel’s lateral (x) axis occurring in atmospheric
flight. It works toward reducing the pitch angle (angle of attack) between the vessel’s longitudinal axis
and the airstream vector.

The larger the scaling factor, the stronger the effect becomes ("stiff handling")

This value is only used with the old aerodynamic flight model, i.e. if not airfoils have been defined.
The default value is O.

See also:

GetPitchMomentScale, SetYawMomentScale, CreateAirfoil

8.51.3.106 double VESSEL::GetYawMomentScale () const

Returns the scaling factor for the yaw moment.

Returns:

yaw moment scale factor

Note:

The yaw moment is the angular moment around the vessel’s vertical (y) axis occurring in atmospheric
flight. It works toward reducing the slip angle between the vessel’s longidudinal axis and the airstream
vector.

This value is only used with the old aerodynamic flight model, i.e. if no airfoils have been defined.

See also:

SetYawMomentScale, GetPitchMomentScale, Create Airfoil

8.51.3.107 void VESSEL::SetYawMomentScale (double scale) const

Sets the scaling factor for the yaw moment.

Parameters:

scale scale factor for yaw angle moment.

Note:

The yaw moment is the angular moment around the vessel’s vertical (y) axis occurring in atmospheric
flight. It works toward reducing the slip angle between the vessel’s longidudinal axis and the airstream
vector.

This value is only used with the old aerodynamic flight model, i.e. if not airfoils have been defined.
The default value is 0.

See also:

SetPitchMomentScale, GetYawMomentScale, Create Airfoil

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 398

8.51.3.108 double VESSEL::GetTrimScale () const

Returns the scaling factor for the pitch trim control.

Returns:

pitch trim scale factor.

Note:

This function returns the value previously set with SetTrimScale
It is only used with the old atmospheric flight model (if no airfoils have been defined).

See also:

SetTrimScale, GetPitchMomentScale, GetYawMomentScale, Create Airfoil

8.51.3.109 void VESSEL::SetTrimScale (double scale) const

Sets the scaling factor for the pitch trim control.

Parameters:

scale pitch trim scaling factor

Note:

This method is used only in combination with the old flight model, that is, if the vessel doesn’t define
any airfoils. In the new flight model, this has been replaced by CreateControlSurface (AIRCTRL_-
ELEVATORTRIM, ...).

If scale is set to zero (default) the vessel does not have a pitch trim control.

See also:

GetTrimScale, SetPitchMomentScale, SetYawMomentScale, CreateAirfoil, CreateControlSurface

8.51.3.110 void VESSEL::SetLiftCoeffFunc (LiftCoeffFunc Icf) const

Defines the callback function for aerodynamic lift calculation.

Parameters:

lef pointer to callback function (see notes)

Note:

[Legacy aerodynamic flight model only]

This method defines callback function for lift calculation as a function of angle of attack for the legacy
flight model. If the vessel uses the new flight model (i.e. defines at least one airfoil), then this value is
ignored, and the airfoil parameters are used instead.

The interface of the callback function is defined as

typedef double (xLiftCoeffFunc) (double aoa)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 399

where aoa is the angle of attack [rad], and the return value is the resulting lift coefficient.

The callback function must be able to process input aoa values in the range -Pi ... +Pi.

The preferred method for defining lift and drag characteristics is via the CreateAirfoil method, which is
much more versatile. Orbiter ignores the SetLiftCoeffFunc function if any airfoils have been created.
If neither airfoils are defined, nor this method is called, then the default behaviour is not to generate
any aerodynamic lift.

See also:

CreateAirfoil

8.51.3.111 double VESSEL::GetLift () const

Returns magnitude of aerodynamic lift force vector.

Returns:

Magnitude of lift force vector [N].

Note:

Return value is the sum of lift components from all airfoils.

See also:

GetLiftVector, GetDrag

8.51.3.112 double VESSEL::GetDrag () const

Returns magnitude of aerodynamic drag force vector.

Returns:

Magnitude of drag force vector [N].

Note:

Return value is the sum of drag components from all airfoils.

See also:

GetDragVector, GetLift

8.51.3.113 bool VESSEL::GetWeightVector (VECTOR3 & G) const

Returns gravitational force vector in local vessel coordinates.

Parameters:

— G gravitational force vector [N]

Returns:

Always true.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 400

Note:

When the vessel status is updated dynamically, G is composed of all gravity sources currently used for
the vessel propagation (excluding sources with contributions below threshold).
During orbit stabilisation, only the contribution from the primary source is returned.

See also:

GetThrustVector, GetLiftVector, GetDragVector, GetForce Vector

8.51.3.114 bool VESSEL::GetThrustVector (VECTOR3 & T) const

Returns thrust force vector in local vessel coordinates.

Parameters:

— T thrust vector [N]

Returns:

false indicates zero thrust. In that case, the returned vector is (0,0,0).

Note:

On return, T contains the vector sum of thrust components from all engines.
This function provides information about the linear thrust force, but not about the angular moment
(torque) induced.

See also:

GetWeightVector, GetLiftVector, GetDragVector, GetForce Vector

8.51.3.115 bool VESSEL::GetLiftVector (VECTOR3 & L) const

Returns aerodynamic lift force vector in local vessel coordinates.

Parameters:

— L lift vector [N]

Returns:

false indicates zero lift. In that case, the returned vector is (0,0,0).

Note:

Return value is the sum of lift components from all airfoils.
The lift vector is perpendicular to the relative wind (and thus to the drag vector) and has zero x-
component.

See also:

GetLift, GetWeightVector, GetThrustVector, GetDragVector, GetForce Vector

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 401

8.51.3.116 bool VESSEL::GetDragVector (VECTOR3 & D) const

Returns aerodynamic drag force vector in local vessel coordinates.

Parameters:

— D drag vector [N]

Returns:

false indicates zero drag. In that case, the returned vector is (0,0,0).

Note:

On return, D contains the sum of drag components from all airfoils.
The drag vector is parallel to the relative wind (direction of air flow).

See also:

GetDrag, GetWeightVector, GetThrustVector, GetLiftVector, GetForce Vector

8.51.3.117 bool VESSEL::GetForceVector (VECTOR3 & F) const

Returns total force vector acting on the vessel in local vessel coordinates.

Parameters:

— F total force vector [N]

Returns:

Always true

Note:

On return, F contains the sum of all forces acting on the vessel.
This may not be equal to the sum of weight, thrust, lift and drag vectors, because it also includes
surface contact forces, user-defined forces and any other forces.

See also:

GetWeightVector, GetThrustVector, GetLiftVector, GetDragVector, GetTorque Vector

8.51.3.118 bool VESSEL::GetTorqueVector (VECTOR3 & M) const

Returns the total torque vector acting on the vessel in local vessel coordinates.

Parameters:

— M total torque vector [Nm]

Returns:

Always true

Note:

On return, M contains the total torque vector acting on the vessel in its centre of mass. The torque vec-
tor contains contributions from thrusters, aerodynamic forces and gravity gradient effects (if enabled).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 402

See also:

GetForceVector

8.51.3.119 void VESSEL::AddForce (const VECTOR3 & F, const VECTOR3 & r) const

Add a custom body force.

Parameters:

F force vector [N]

r force attack point in local vessel coordinates [m]

Note:

This function can be used to implement custom forces (braking chutes, tethers, etc.). It should not
be used for standard forces such as engine thrust or aerodynamic forces which are handled internally
(although in theory this function makes it possible to bypass Orbiter’s built-in thrust and aerodynamics
model completely and replace it by a user-defined model).

The force is applied only for the next time step. AddForce will therefore usually be used inside the
VESSEL2::clbkPreStep callback function.

See also:

GetForceVector

8.51.3.120 PROPELLANT_HANDLE VESSEL::CreatePropellantResource (double maxmass,
double mass = -1 . 0, double efficiency = 1 . 0) const

Create a new propellant resource ("fuel tank").

Propellant resources are a component of the vessel’s propulsion system. They can hold propellants and
distribute them to connected engines to generate thrust.

Parameters:

maxmass maximum propellant capacity of the tank [kg]
mass initial propellant mass of the resource [kg]
efficiency fuel efficiency factor (>0)

Returns:

propellant resource handle

Note:

Orbiter doesn’t distinguish between propellant and oxidant. A "propellant resource" is assumed to be
a combination of fuel and oxidant resources.

The interpretation of a propellant resource (liquid or solid propulsion system, ion drive, etc.) is up to
the vessel developer.

The rate of fuel consumption depends on the thrust level and Isp (fuel-specific impulse) of the thrusters
attached to the resource.

The fuel efficiency rating, together with a thruster’s Isp rating, determines how much fuel is consumed
per second to obtain a given thrust: R = F(e- I sp)*1 with fuel rate R [kg/s], thrust F [N], efficiency
e and fuel-specific impulse Isp [m/s].

If mass < 0 then mass = maxmass is substituted.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 403

See also:

DelPropellantResource, SetPropellantMaxMass, SetPropellantMass, SetPropellantEfficiency, GetPro-
pellantMaxMass, GetPropellantMass, GetPropellantEfficiency

8.51.3.121 void VESSEL::DelPropellantResource (PROPELLANT_HANDLE & ph) const

Remove a propellant resource.

Parameters:

ph propellant resource handle (NULL on return)

Note:

If any thrusters were attached to this fuel resource, they are disabled until connected to a new fuel
resource.

See also:

CreatePropellantResource, ClearPropellantResources

8.51.3.122 void VESSEL.::ClearPropellantResources () const

Remove all propellant resources for the vessel.

Note:

After a call to this function, all the vessel’s thrusters will be disabled until they are linked to new
resources.

See also:

DelPropellantResource

8.51.3.123 DWORD VESSEL::GetPropellantCount () const

Returns the current number of vessel propellant resources.

Returns:

Number of propellant resources currently defined for the vessel.

See also:

CreatePropellantResource, GetPropellantHandleByIndex

8.51.3.124 PROPELLANT_HANDLE VESSEL::GetPropellantHandleByIndex (DWORD idx)
const

Returns the handle of a propellant resource for a given index.

Parameters:

idx propellant resource index (>= 0)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 404

Returns:

Propellant resource handle

Note:

The index must be in the range between 0 and GetPropellantCount()-1. If the index is out of range, the
returned handle is NULL.

The index of a given propellant resource may change if any resources are deleted. The handle remains
valid until the corresponding resource is deleted.

See also:

CreatePropellantResource, GetPropellantCount

8.51.3.125 double VESSEL::GetPropellantMaxMass (PROPELLANT_HANDLE ph) const

Returns the maximum capacity of a propellant resource.

Parameters:

ph propellant resource handle

Returns:

Max. propellant capacity [kg].

See also:

SetPropellantMaxMass, GetPropellantMass, SetPropellantMass

8.51.3.126 void VESSEL::SetPropellantMaxMass (PROPELLANT_HANDLE ph, double max-
mass) const

Reset the maximum capacity of a fuel resource.

Parameters:

ph propellant resource handle

maxmass max. fuel capacity (>=0) [kg]

Note:

The actual fuel mass contained in the tank is not affected by this function, unless the new maximum
propellant mass is less than the current fuel mass, in which case the fuel mass is reduced to the maxi-
mum capacity.

See also:

GetPropellantMaxMass, SetPropellantMass, GetPropellantMass, GetTotalPropellantMass, GetFuel-
Mass, SetPropellantEfficiency

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 405

8.51.3.127 double VESSEL::GetPropellantMass (PROPELLANT_HANDLE ph) const

Returns the current mass of a propellant resource.

Parameters:

ph propellant resource handle

Returns:

Current propellant mass [kg].

See also:

SetPropellantMass, GetPropellantMaxMass, SetPropellantMaxMass

8.51.3.128 void VESSEL::SetPropellantMass (PROPELLANT_HANDLE ph, double mass) const

Reset the current mass of a propellant resource.

Parameters:

ph propellant resource handle

mass propellant mass (>= 0) [kg]

Note:

0 <= mass <= maxmass is required, where maxmass is the maximum capacity of the propellant
resource.

This method should be used to simulate refuelling, fuel leaks, cross-feeding between tanks, etc. but
not for normal fuel consumption by thrusters (which is handled internally by the Orbiter core).

See also:

GetPropellantMass, SetPropellantMaxMass, GetTotalPropellantMass, GetFuelMass, SetPropellantEf-
ficiency

8.51.3.129 double VESSEL.::GetTotalPropellantMass () const

Returns the vessel’s current total propellant mass.

Returns:

Sum of current mass of all propellant resources defined for the vessel [kg].

See also:

GetPropellantMass, GetPropellantMaxMass

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 406

8.51.3.130 double VESSEL::GetPropellantEfficiency (PROPELLANT_HANDLE ph) const

Returns the efficiency factor of a propellant resource.

Parameters:

ph propellant resource handle

Returns:

Fuel efficiency factor

Note:

The fuel efficiency rating, together witha thruster’s Isp rating, determines how much fuel is consumed
per second to obtain a given thrust: R = F/(e Isp) with fuel rate R [kg/s], thrust F [N], efficiency e and
fuel-specific impulse Isp [m/s].

See also:

SetPropellantEfficiency, GetPropellantMaxMass, CreatePropellantResource

8.51.3.131 void VESSEL::SetPropellantEfficiency (PROPELLANT_HANDLE ph, double effi-
ciency) const

Reset the efficiency factor of a fuel resource.

Parameters:

ph propellant resource handle
efficiency fuel efficiency factor (> 0)

Note:

The fuel efficiency rating, together witha thruster’s Isp rating, determines how much fuel is consumed
per second to obtain a given thrust: R = F/(e Isp) with fuel rate R [kg/s], thrust F [N], efficiency e and
fuel-specific impulse Isp [m/s].

See also:

GetPropellantEfficiency, CreatePropellantResource, SetPropellantMaxMass, SetPropellantMass

8.51.3.132 double VESSEL::GetPropellantFlowrate (PROPELLANT_HANDLE ph) const

Returns the current mass flow rate from a propellant resource.

Parameters:

ph propellant resource handle

Returns:

Current propellant mass flow rate [kg/s].

See also:

GetPropellantMass, GetTotalPropellantFlowrate, GetFuelRate

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 407

8.51.3.133 double VESSEL::GetTotalPropellantFlowrate () const

Returns the current total mass flow rate, summed over all propellant resources.

Returns:

Total propellant mass flow rate [kg/s].

See also:

GetPropellantFlowrate, GetFuelRate

8.51.3.134 void VESSEL::SetDefaultPropellantResource (PROPELLANT_HANDLE ph) const
Define a "default" propellant resource.

This is used for the various legacy fuel-related API functions, and for the "Fuel" indicator in the generic
panel-less HUD display.

Parameters:

ph propellant resource handle

Note:

If this function is not called, the first propellant resource is used as default.

See also:

CreatePropellantResource, GetDefaultPropellantResource

8.51.3.135 PROPELLANT_HANDLE VESSEL::GetDefaultPropellantResource () const

Returns the handle for the vessel’s default propellant resource.

Returns:

Default propellant resource handle

See also:

SetDefaultPropellantResource

8.51.3.136 double VESSEL::GetMaxFuelMass () const

Returns the maximum capacity of the vessel’s default propellant resource.

Returns:

Max. capacity of default propellant resource [kg].

Note:

The function returns O if no fuel resources are defined.

See also:

GetPropellantMaxMass, SetDefaultPropellantResource

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 408

8.51.3.137 void VESSEL::SetMaxFuelMass (double mass) const

Set the maximum fuel capacity of the vessel’s default propellant resource.

Parameters:

mass max. propellant mass [kg].

Note:

If no propellant resources are defined for the vessel, a call to this method creates a new propellant
resource with the specified capacity.

If the vessel already contains propellant resources, this method resets the maximum capacity of the
vessel’s default resource.

See also:

SetPropellantMaxMass, SetDefaultPropellantResource

8.51.3.138 double VESSEL::GetFuelMass () const

Returns the current mass of the vessel’s default propellant resource.

Returns:

Current mass of the default propellant resource [kg].

See also:

GetPropellantMass, SetDefaultPropellantResource

8.51.3.139 void VESSEL::SetFuelMass (double mass) const

Reset the current mass of the vessel’s default propellant resource.

Parameters:

mass new propellant mass [kg].

Note:

mass must be between 0 and the maximum capacity of the propellant resource.
If the vessel has not defined any propellant resources, this method has no effect.

See also:

GetFuelMass, SetPropellantMass, SetMaxFuelMass, SetDefaultPropellantResource

8.51.3.140 double VESSEL::GetFuelRate () const

Returns the current mass flow rate from the default propellant resource.

Returns:

Current mass flow rate from the default propellant resource [kg/s].

See also:

GetPropellantFlowrate, SetDefaultPropellantResource

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 409

8.51.3.141 THRUSTER_HANDLE VESSEL::CreateThruster (const VECTOR3 & pos, const
VECTOR3 & dir, double maxth0, PROPELLANT_HANDLE hp = NULL, double isp0 = 0 . 0, double
isp_ref=0.0,doublep_ref=101.4e3) const

Add a logical thruster definition for the vessel.

Parameters:

pos thrust force attack point in vessel coordinates [m]

dir thrust force direction in vessel coordinates (normalised)
maxth0 max. vacuum thrust rating [N]

hp propellant resource feeding the thruster

isp0 vacuum fuel-specific impulse (Isp) [m/s]

isp_ref Isp value at reference pressure p_ref [m/s]

p_ref reference pressure for Isp_ref [Pa]

Returns:

Thruster identifier

Note:

The fuel-specific impulse defines how much thrust is produced by burning 1kg of fuel per second. If
the Isp level is not specified or is = 0, a default value is used (see SetISP()).

To define the thrust and Isp ratings to be pressure-dependent, specify an isp_ref value > 0, and set
p_ref to the corresponding atmospheric pressure. Thrust and Isp at pressure p will then be calculated
as

_ Ispg — Ispef

Isp(p) = Ispy(1 — pn), Th(p) = Tho(1 — pn), where 7 elsp
re 0

If isp_ref = 0 then no pressure-dependency is assumed (1 = 0).
If no propellant resource is specified, the thruster is disabled until it is linked to a resource by Set-
ThrusterResource().
If isp0 <= 0, then the default Isp value is substituted (see SetISP()).
Thruster forces can create linear as well as angular moments, depending on the attack point and direc-
tion.
Use CreateThrusterGroup to assemble thrusters into logical groups.
See also:

DelThruster, CreateThrusterGroup, AddExhaust, SetISP, SetThrusterIsp, SetThrusterResource

8.51.3.142 bool VESSEL::DelThruster (THRUSTER_HANDLE & th) const

Delete a logical thruster definition.

Parameters:

th thruster handle (NULL on return)

Returns:

true on success, false if the supplied thruster handle was invalid.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 410

Note:

Deleted thrusters will be automatically removed from all thruster groups they had been assigned to.
All exhaust render definitions which refer to the deleted thruster are removed.

See also:

CreateThruster, CreateThrusterGroup, AddExhaust

8.51.3.143 void VESSEL::ClearThrusterDefinitions () const

Delete all thruster and thruster group definitions.

Note:
This function removes all thruster definitions, as well as all the thruster group definitions.
It also removes all previously defined exhaust render definitions.

See also:

CreateThruster, DelThruster, CreateThrusterGroup, AddExhaust

8.51.3.144 DWORD VESSEL::GetThrusterCount () const

Returns the number of thrusters currently defined.

Returns:

Number of logical thruster definitions.

See also:

CreateThruster, GetThrusterHandleByIndex

8.51.3.145 THRUSTER_HANDLE VESSEL::GetThrusterHandleByIndex (DWORD idx) const

Returns the handle of a thruster specified by its index.

Parameters:

idx thruster index (>=0)

Returns:

Thruster handle

Note:

The index must be in the range between 0 and nthruster-1, where nthruster is the thruster count returned
by GetThrusterCount(). If the index is out of range, the returned handle is NULL.

The index of a given thruster may change if vessel thrusters are deleted. The handle remains valid until
the corresponding thruster is deleted.

See also:

CreateThruster, DelThruster, GetThrusterCount

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 411

8.51.3.146 PROPELLANT_HANDLE VESSEL::GetThrusterResource (THRUSTER_HANDLE
th) const

Returns a handle for the propellant resource feeding the thruster.

Parameters:

th thruster handle

Returns:

Propellant resource handle, or NULL if the thruster is not connected.

See also:

SetThrusterResource, CreateThruster

8.51.3.147 void VESSEL::SetThrusterResource (THRUSTER_HANDLE th, PROPELLANT .-
HANDLE ph) const

Connect a thruster to a propellant resource.

Parameters:

th thruster handle

ph propellant resource handle

Note:

A thruster can only be connected to one propellant resource at a time. Setting a new resource discon-
nects from the previous resource.
To disconnect the thruster from its current tank, use ph = NULL.

See also:

GetThrusterResource

8.51.3.148 void VESSEL::GetThrusterRef (THRUSTER_HANDLE th, VECTOR3 & pos) const

Returns the thrust force attack point of a thruster.

Parameters:

«— th thruster handle

— pos thrust attack point [m]

Note:

pos is returned in the vessel frame of reference.

See also:

SetThrusterRef, GetThrusterDir

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 412

8.51.3.149 void VESSEL::SetThrusterRef (THRUSTER_HANDLE th, const VECTOR3 & pos)
const

Reset the thrust force attack point of a thruster.

Parameters:

th thruster handle

pos new force attack point [m]

Note:

pos is specified in the vessel reference system.
This method should be used whenever a thruster has been physically moved in the vessel’s local frame
of reference.
If the vessel’s centre of gravity, i.e. the origin of its reference system, is moved with ShiftCG(), the
thruster positions are updated automatically.
The attack point has no influence on the linear force exerted on the vessel by the thruster, but it affects
the induced torque.

See also:

GetThrusterRef, CreateThruster, ShiftCG, SetThrusterDir

8.51.3.150 void VESSEL::GetThrusterDir (THRUSTER_HANDLE th, VECTOR3 & dir) const

Returns the force direction of a thruster.

Parameters:

<« th thruster handle

— dir thrust direction (vessel frame of reference)

See also:

SetThrusterDir, GetThrusterRef

8.51.3.151 void VESSEL::SetThrusterDir (THRUSTER_HANDLE ¢k, const VECTOR3 & dir)
const

Reset the force direction of a thruster.

Parameters:

th thruster handle
dir new thrust direction (vessel frame of reference)
Note:

This method can be used to realise a tilt of the rocket motor (e.g. for implementing a thruster gimbal
mechanism)

See also:

GetThrusterDir, CreateThruster, SetThrusterRef

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 413

8.51.3.152 double VESSEL::GetThrusterMax(0 (THRUSTER_HANDLE ¢h) const

Returns the maximum vacuum thust rating of a thruster.

Parameters:

th thruster handle

Returns:

Maximum vacuum thust rating [N]

Note:

To retrieve the actual current maximum thrust rating (which may be lower in the presence of ambient
atmospheric pressure), use GetThrusterMax().

See also:

SetThrusterMaxO0,
GetThrusterMax(THRUSTER_HANDLE)const,
GetThrusterMax(THRUSTER_HANDLE,double)const

8.51.3.153 void VESSEL::SetThrusterMax(0 (THRUSTER_HANDLE th, double maxth0) const

Reset the maximum vacuum thrust rating of a thruster.

Parameters:

th thruster handle

maxth0 new maximum vacuum thrust rating [N]

Note:

The max. thrust rating in the presence of atmospheric ambient pressure may be lower than the vacuum
thrust if a pressure-dependent Isp value has been defined.

See also:

GetThrusterMax0, CreateThruster,
SetThrusterlsp(THRUSTER_HANDLE,double)const,
SetThrusterlsp(THRUSTER_HANDLE,double,double,double)const

8.51.3.154 double VESSEL::GetThrusterMax (THRUSTER_HANDLE th) const

Returns the current maximum thrust rating of a thruster.

Parameters:

th thruster handle

Returns:

Max. thrust rating a the current atmospheric pressure [N].

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 414

Note:

If a pressure-dependent Isp rating has been defined for the thruster, and if the vessel is moving through
a planetary atmosphere, this method returns the maximum thrust rating given the current atmospheric
pressure.

Otherwise it returns the maximum vacuum thrust rating of the thruster.

See also:

GetThrusterMax(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double,double,double)const,
CreateThruster

8.51.3.155 double VESSEL::GetThrusterMax (THRUSTER_HANDLE ¢k, double p_ref) const

Returns the maximum thrust rating of a thruster at a specific ambient pressure.

Parameters:

th thruster handle

p_ref reference pressure [Pa]

Returns:

Max. thrust rating a atmospheric pressure p_ref [N].

Note:
If a pressure-dependent Isp rating has been defined for the thruster, and if the vessel is moving through
a planetary atmosphere, this method returns the maximum thrust rating at ambient pressure p_ref.
Otherwise it returns the maximum vacuum thrust rating of the thruster.

See also:

GetThrusterMax(THRUSTER_HANDLE)const,
SetThrusterIsp(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double,double,double)const,
CreateThruster

8.51.3.156 double VESSEL::GetThrusterIsp) (THRUSTER_HANDLE th) const

Returns the vacuum fuel-specific impulse (Isp) rating for a thruster.

Parameters:

th thruster handle

Returns:

Isp value in vacuum [m/s]

Note:
Equivalent to GetThrusterIsp (th,0)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 415

See also:

GetThrusterIsp(THRUSTER_HANDLE)const,
GetThrusterIsp(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double,double,double)const,
CreateThruster

8.51.3.157 double VESSEL::GetThrusterIsp (THRUSTER_HANDLE ¢h) const

Returns the current fuel-specific impulse (Isp) rating of a thruster.

Parameters:

th thruster handle

Returns:

Current Isp value [m/s].

Note:

If the vessel is moving within a planetary atmosphere, and if a pressure-dependent Isp rating has been
defined for this thruster, the returned Isp value will vary with ambient atmospheric pressure.

See also:

GetThrusterIsp(THRUSTER_HANDLE,double)const,
GetThrusterIsp0,
SetThrusterlsp(THRUSTER_HANDLE,double)const,
SetThrusterlsp(THRUSTER_HANDLE,double,double,double)const,
CreateThruster

8.51.3.158 double VESSEL::GetThrusterIsp (THRUSTER_HANDLE th, double p_ref) const

Returns the fuel-specific impulse (Isp) rating of a thruster at a specific ambient atmospheric pressure.

Parameters:

th thruster handle

p_ref reference pressure [Pa]

Returns:

Isp value at ambient pressure p_ref [m/s].

Note:

If no pressure-dependent Isp rating has been defined for this thruster, it will always return the vacuum
rating, independent of the specified pressure.

To obtain vacuum Isp rating, set p_ref to 0.

To obtain the Isp rating at (Earth) sea level, set p_ref = 101.4e3.

See also:

GetThrusterIsp(THRUSTER_HANDLE)const,

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 416

GetThrusterIsp0,
SetThrusterlsp(THRUSTER_HANDLE,double)const,
SetThrusterIsp(THRUSTER_HANDLE,double,double,double)const,
CreateThruster

8.51.3.159 void VESSEL::SetThrusterIsp (THRUSTER_HANDLE th, double isp) const

Reset the fuel-specific impulse (Isp) rating of a thruster, assuming no pressure dependence.

Parameters:

th thruster handle

isp new Isp rating [m/s]

Note:

The Isp value correlates the propellant mass flow rate dm/dt with the resulting thrust force F: F = Isp
(dm/dt).

In the engineering literature, fuel-specific impulse is sometimes given in units of time, by dividing the
Isp as defined above by the gravitational acceleration 1g = 9.81 m/s2 .

The specified Isp value is assumed to be independent of ambient atmospheric pres-
sure. To define a pressure-dependent Isp value, use SetThrusterlsp(THRUSTER_-
HANDLE,double,double,double)const.

See also:

SetThrusterIsp(THRUSTER_HANDLE,double,double,double)const,
GetThrusterIsp(THRUSTER_HANDLE)const,
GetThrusterIsp(THRUSTER_HANDLE,double)const, GetThrusterIspO,
CreateThruster

8.51.3.160 void VESSEL::SetThrusterIsp (THRUSTER_HANDLE th, double isp0, double isp_ref,
double p_ref=101.4e3) const

Reset the fuel-specific impulse (Isp) rating of a thruster including a pressure dependency.

Parameters:

th thruster handle
isp0 vacuum Isp rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]

p_ref reference pressure [Pa] for isp_ref (defaults to Earth sea level pressure)

Note:

See SetThrusterIsp(THRUSTER_HANDLE,double)const for a definition of the relationship between
Isp, thrust and fuel mass flow rate.

See also:

SetThrusterlsp(THRUSTER_HANDLE,double)const,
GetThrusterIsp(THRUSTER_HANDLE)const,
GetThrusterIsp(THRUSTER_HANDLE,double)const,
GetThrusterIsp0, CreateThruster

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 417

8.51.3.161 double VESSEL::GetThrusterLevel THRUSTER_HANDLE ¢h) const

Returns the current thrust level setting of a thruster.

Parameters:

th thruster handle

Returns:

Current thrust level (0...1)

Note:
To obtain the actual force [N] currently generated by the thruster, multiply the thrust level with the
max. thrust rating returned by GetThrusterMax().

See also:

GetThrusterMax, SetThrusterLevel

8.51.3.162 void VESSEL::SetThrusterLevel (THRUSTER_HANDLE ¢h, double level) const

Set thrust level for a thruster.

Parameters:

th thruster handle
level thrust level (0...1)

Note:

At level 1 the thruster generates maximum force, as defined by its maxth parameter.
Certain thrusters are controlled directly by Orbiter via primary input controls (e.g. joystick throttle
control for main thrusters), which may override this function.

See also:

IncThrusterLevel, GetThrusterLevel

8.51.3.163 void VESSEL::IncThrusterLevel (THRUSTER_HANDLE th, double dlevel) const

Apply a change to the thrust level of a thruster.

Parameters:

th thruster handle
dlevel thrust level change (-1...1)

Note:

The applied thrust level change is limited to give a resulting thrust level in the range (0...1).

See also:

SetThrusterLevel, GetThrusterLevel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 418

8.51.3.164 void VESSEL::SetThrusterLevel_SingleStep (THRUSTER_HANDLE th, double level)
const

Set the thrust level of a thruster for the current time step only.

Parameters:

th thruster handle
level thrust level (0...1)

Note:

At level 1 the thruster generates maximum force, as defined by its maxth parameter.
This method overrides the thruster’s permanent thrust level for the current time step only, so it should
normally only be used in the body of the VESSEL2::clbkPreStep() method.

See also:

SetThrusterLevel, VESSEL2::clbkPreStep()

8.51.3.165 void VESSEL::IncThrusterLevel_SingleStep (THRUSTER_HANDLE ¢h, double dlevel)
const

Apply a thrust level change to a thruster for the current time step only.

Parameters:

th thruster handle
dlevel thrust level change (-1...1)

Note:

This method overrides the thruster’s permanent thrust level for the current time step only, so it should
normally only be used in the body of the VESSEL2::clbkPreStep() method.
This method may be overridden by manual user input via keyboard and joystick, or by automatic
attitude sequences.
The applied thrust level change is limited to give a resulting thrust level in the range (0...1).

See also:

SetThrusterLevel_SingleStep, IncThrusterLevel, VESSEL?2::clbkPreStep()

8.51.3.166 void VESSEL::GetThrusterMoment (THRUSTER_HANDLE ¢h, VECTOR3 & F,
VECTOR3 & T) const

Returns the linear moment (force) and angular moment (torque) currently generated by a thruster.

Parameters:
th thruster handle
F linear force [N]
T torque [Nm]
Note:

The returned values include the influence of ambient pressure on the thrust generated by the engine.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 419

8.51.3.167 double VESSEL::GetISP () const

Returns the vessel’s current default fuel-specific impulse.

Returns:
Fuel-specific impulse [m/s]. The is the amount of thrust [N] obtained by burning lkg of fuel per
second.

Note:

The function returns the current default Isp value which will be used for all subsequently defined
thrusters which do not define their individual Isp settings.
To obtain an actual Isp value for a thruster, use GetThrusterISP.
The default Isp value can be set by the SetISP() method, or via the "Isp’ entry in the vessel configuration
file. If not defined, the default value is Se4.

See also:

SetISP, GetThrusterISP

8.51.3.168 void VESSEL::SetISP (double isp) const

Sets the default Isp value for subsequently created thrusters.

Parameters:

isp fuel-specific impulse [m/s]

Note:

The Isp value defines the amount of thrust [N] obtained by burning 1 kg of fuel per second.

Resetting the default Isp value affects only thrusters which are created subsequently, and which don’t
define individual Isp values.

Before the first call to SetISP, the initial value is read from the ’Isp’ entry of the vessel definition file.
If no entry exists, a value of 5e4 is used.

It is recommended to define individual Isp values during thruster creation instead of using SetISP.

8.51.3.169 THGROUP_HANDLE VESSEL::CreateThrusterGroup (THRUSTER_HANDLE x th,
int nth, THGROUP_TYPE thgt) const

Combine thrusters into a logical group.

Parameters:

th array of thruster handles to form a group
nth number of thrusters in the array

thgt thruster group type (see Thruster and thruster-group parameters)

Returns:

thruster group handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 420

Note:

Thruster groups (except for user-defined groups) are engaged by Orbiter as a result of user input.
For example, pushing the stick backward in rotational attitude mode will engage the thrusters in the
THGROUP_ATT_PITCHUP group.

It is the responsibility of the vessel designer to make sure that the thruster groups are designed so that
they behave in a sensible way.

Thrusters can be added to more than one group. For example, an attitude thruster can be simultaneously
grouped into THGROUP_ATT_PITCHUP and THGROUP_ATT_UP.

Rotational thrusters should be designed so that they don’t induce a significant linear momentum. This
means rotational groups require at least 2 thrusters each.

Linear thrusters should be designed such that they don’t induce a significant angular momentum.

If a vessel does not define a complete set of attitude thruster groups, certain navmode sequences (e.g.
KILLROT) may fail.

See also:

DelThrusterGroup, CreateThruster, Thruster and thruster-group parameters

8.51.3.170 bool VESSEL::DelThrusterGroup (THGROUP_HANDLE thg, bool delth = false)
const

Delete a thruster group and (optionally) all associated thrusters.

Parameters:

thg thruster group handle

delth thruster destruction flag (see notes)

Returns:

frue on success.

Note:

If delth==true, all thrusters associated with the group will be destroyed. Note that this can have side
effects if the thrusters were associated with multiple groups, since they are removed from all those
groups as well.

See also:

DelThrusterGroup(THGROUP_TYPE,bool)const, CreateThrusterGroup, DelThruster, Thruster and
thruster-group parameters

8.51.3.171 bool VESSEL::DelThrusterGroup (THGROUP_TYPE thgt, bool delth = false) const

Delete a default thruster group and (optionally) all associated thrusters.

Parameters:

thgt thruster group type (excluding THGROUP_USER)
delth thruster destruction flag

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 421

Returns:

frue on success

Note:

This version can only be used for default thruster groups (< THGROUP_USER).

If delth==true, all thrusters associated with the group will be destroyed. Note that this can have side
effects if the thrusters were associated with multiple groups, since they are removed from all those
groups as well.

See also:

DelThrusterGroup(THGROUP_HANDLE,bool)const, CreateThrusterGroup, DelThruster, Thruster
and thruster-group parameters

8.51.3.172 THGROUP_HANDLE VESSEL::GetThrusterGroupHandle (THGROUP_TYPE thgt)
const

Returns the handle of a default thruster group.

Parameters:

thgt thruster group type (see Thruster and thruster-group parameters)

Returns:

thruster group handle (or NULL if no group is defined for the specified type).

Note:
The thruster group type must not be THGROUP_USER. To retrieve the handle of a nonstandard
thruster group, use GetUserThrusterGroupHandleByIndex().

See also:

GetUserThrusterGroupHandleByIndex

8.51.3.173 THGROUP_HANDLE VESSEL::GetUserThrusterGroupHandleByIndex (DWORD
idx) const

Returns the handle of a user-defined (nonstandard) thruster group.

Parameters:

idx index of user-defined thruster group (>= 0)

Returns:

thruster group handle (or NULL if index out of range)

Note:

Use this method only to retrieve handles for nonstandard thruster groups (created with the
THGROUP_USER flag). For standard groups, use GetThrusterGroupHandle() instead.

The index must be in the range between 0 and nuserthgroup-1, where nuserthgroup is the number of
nonstandard thruster groups. Use GetUserThrusterGroupCount() to obtain this value.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 422

See also:

GetThrusterGroupHandle, GetUserThrusterGroupCount

8.51.3.174 DWORD VESSEL::GetGroupThrusterCount (THGROUP_HANDLE thg) const

Returns the number of thrusters assigned to a logical thruster group.

Parameters:

thg thruster group handle

Returns:

Number of thrusters assigned to the specified thruster group.

Note:

Thrusters can be assigned to more than one group (and some thrusters may not be assigned to any
group) so the sum of GetGroupThrusterCount values over all groups can be different to the total num-
ber of thrusters.

See also:

GetGroupThrusterCount(THGROUP_TYPE)const

8.51.3.175 DWORD VESSEL::GetGroupThrusterCount (THGROUP_TYPE thgt) const

Returns the number of thrusters assigned to a standard logical thruster group.

Parameters:

thgt thruster group enumeration type (see Thruster and thruster-group parameters)

Returns:

Number of thrusters assigned to the specified thruster group.

Note:

This function only works for standard group types. Do not use it with THGROUP_USER. For user-
defined groups, use VESSEL::GetGroupThrusterCount(THGROUP_HANDLE)const instead.
Thrusters can be assigned to more than one group (and some thrusters may not be assigned to any
group) so the sum of GetGroupThrusterCount values over all groups can be different to the overall
number of thrusters.

See also:

GetGroupThrusterCount(THGROUP_HANDLE)const

8.51.3.176 THRUSTER_HANDLE VESSEL::GetGroupThruster (THGROUP_HANDLE thg,
DWORD idx) const

Returns a handle for a thruster that belongs to a specified thruster group.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 423

Parameters:

thg thruster group handle
idx thuster index (0 <=idx < GetGroupThrusterCount())

Returns:

Thuster handle

8.51.3.177 THRUSTER_HANDLE VESSEL::GetGroupThruster (THGROUP_TYPE thgt,
DWORD idx) const

Returns a handle for a thruster that belongs to a standard thruster group.

Parameters:

thgt thruster group enumeration type (see Thruster and thruster-group parameters)

idx thruster index (0 <= idx < GetGroupThrusterCount())

Returns:

Thruster handle

Note:

This function only works for standard group types. Do not use with THGROUP_USER. For user-
defined groups, use GetGroupThruster(THGROUP_HANDLE,DWORD)const.

8.51.3.178 DWORD VESSEL::GetUserThrusterGroupCount () const

Returns the number of user-defined (nonstandard) thruster groups.

Returns:

Number of user-defined thruster groups.

Note:

The value returned by this method only includes user-defined thruster groups (created with the
THGROUP_USER flag). It does not contain any standard thruster groups (such as THGROUP_MAIN,
etc.)

8.51.3.179 bool VESSEL::ThrusterGroupDefined (THGROUP_TYPE thgt) const

Indicates if a default thruster group is defined by the vessel.

Parameters:

thgt thruster group enumeration type (see Thruster and thruster-group parameters)

Returns:

true if the group contains any thrusters, false otherwise.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 424

Note:

This method only works for default groups. Do not use with THGROUP_USER.
A group is considered to be "defined" if it contains at least one thruster.

See also:

GetGroupThrusterCount

8.51.3.180 void VESSEL::SetThrusterGroupLevel (THGROUP_HANDLE thg, double level) const

Sets the thrust level for all thrusters in a group.

Parameters:
thg thruster group identifier
level new thrust level (range 0-1)
See also:

SetThrusterGroupLevel(THGROUP_TYPE,double)const

8.51.3.181 void VESSEL::SetThrusterGroupLevel (THGROUP_TYPE thgt, double level) const

Sets the thrust level for all thrusters in a standard group.

Parameters:
thgt thruster group type (see Thruster and thruster-group parameters)
level new thrust level (range 0-1)
Note:
This method can only be used with standard thruster group types. Do not use with THGROUP_USER.

See also:

SetThrusterGroupLevel (THGROUP_HANDLE,double)const

8.51.3.182 void VESSEL::IncThrusterGroupLevel (THGROUP_HANDLE thg, double dlevel)
const

Increments the thrust level for all thrusters in a group.

Parameters:

thg thruster group identifier
dlevel thrust level increment

Note:

Resulting thrust levels are automatically truncated to the range [0..1]
Use negative dlevel to decrement the thrust level.

See also:

VESSEL::IncThrusterGroupLeve(THGROUP_TYPE,double)const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 425

8.51.3.183 void VESSEL::IncThrusterGroupLevel (THGROUP_TYPE thgt, double dlevel) const

Increments the thrust level for all thrusters in a standard group.

Parameters:

thgt thruster group type

dlevel thrust level increment

Note:

This method can be used for standard thruster group types enumerated in Thruster and thruster-group
parameters except THGROUP_USER.

Resulting thrust levels are automatically truncated to the range [0..1]

Use negative dlevel to decrement the thrust level.

See also:

VESSEL::IncThrusterGroupLevel(THGROUP_HANDLE,double)const

8.51.3.184 void VESSEL::IncThrusterGroupLevel_SingleStep (THGROUP_HANDLE thg, double
dlevel) const

Increments the thrust level of a group for a single time step.

Parameters:

thg thruster group identifier

dlevel thrust level increment

Note:

The total thrust level of a thruster group is composed of the sum of a permanent and an override
portion, constrained to range [0..1]. The permanent setting only changes when reset explicitly, while
the override setting is reset to zero after each time step.

This function increments the override portion of the thrust level for the thruster group for the current
time step only.

Negative values for the override thrust level are permitted to reduce the total thrust level below its
permanent setting (down to a minimum of 0).

Any override adjustments of individual thrusters in the group with IncThrusterLevel_SingleStep are
added to their total level.

See also:

IncThrusterGroupLevel_SingleStep(THGROUP_TYPE,double)const, IncThrusterLevel_SingleStep

8.51.3.185 void VESSEL::IncThrusterGroupLevel_SingleStep (THGROUP_TYPE thgt, double
dlevel) const

Increments the thrust level of a standard group for a single time step.

Parameters:

thgt thruster group type

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 426

dlevel thrust level increment
Note:

The total thrust level of a thruster group is composed of the sum of a permanent and an override
portion, constrained to range [0..1]. The permanent setting only changes when reset explicitly, while
the override setting is reset to zero after each time step.

This function increments the override portion of the thrust level for the thruster group for the current
time step only.

Negative values for the override thrust level are permitted to reduce the total thrust level below its
permanent setting (down to a minimum of 0).

Any override adjustments of individual thrusters in the group with IncThrusterLevel_SingleStep are
added to their total level.

See also:

IncThrusterGroupLevel_SingleStep(THGROUP_HANDLE,double)const, IncThrusterLevel_-
SingleStep

8.51.3.186 double VESSEL::GetThrusterGroupLevel (THGROUP_HANDLE thg) const

Returns the mean thrust level for a thruster group.
Parameters:

thg thruster group identifier
Returns:

Mean group thrust level [0..1]

Note:

In general, this method is only useful for groups where all thrusters have the same maximum thrust
rating and the same thrust direction.

See also:

GetThrusterGroupLevel(THGROUP_TYPE)const

8.51.3.187 double VESSEL::GetThrusterGroupLevel (THGROUP_TYPE thgt) const

Returns the mean thrust level for a default thruster group.
Parameters:

thgt thruster group type
Returns:

Mean group thrust level [0..1]

Note:

In general, this method is only useful for groups where all thrusters have the same maximum thrust
rating and the same thrust direction.

See also:

GetThrusterGroupLevel(THGROUP_HANDLE)const

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 427

8.51.3.188 double VESSEL::GetManualControlLevel (THGROUP_TYPE thgt, DWORD mode =
MANCTRL_ATTMODE, DWORD device = MANCTRL_ANYDEVICE) const

Returns the thrust level of an attitude thruster group set via keyboard or mouse input.

Parameters:

thgt thruster group identifier
mode attitude control mode (see Manual control mode identifiers)

device input device (see Manual control device identifiers)

Returns:

Manual thrust level [0..1]

Note:

If mode is not MANCTRL_ANYMODE, only thruster groups which are of the specified mode (linear
or rotational) will return nonzero values.

8.51.3.189 int VESSEL::GetAttitudeMode () const

Returns the current RCS (reaction control system) thruster mode.

Returns:

Current RCS mode (see RCS mode identifiers)

Note:

The reaction control system consists of a set of small thrusters arranged around the vessel. They can be
fired in pre-defined configurations to provide either a change in angular velocity (in RCS_ROT mode)
or in linear velocity (in RCS_LIN mode).

RCS_NONE indicates that the RCS is disabled or not available.

Currently Orbiter doesn’t allow simultaneous linear and rotational RCS control via keyboard or joy-
stick. The user has to switch between the two. However, simultaneous operation is possible via the
"RControl" plugin module.

Not all vessel classes may define a complete RCS.

See also:

SetAttitudeMode, RCS mode identifiers

8.51.3.190 bool VESSEL.::SetAttitudeMode (int mode) const

Sets the vessel’s RCS (reaction control system) thruster mode.

Parameters:

mode New RCS mode (see RCS mode identifiers)

Returns:

true on success, false for invalid argument

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 428

Note:

The reaction control system consists of a set of small thrusters arranged around the vessel. They can be
fired in pre-defined configurations to provide either a change in angular velocity (in RCS_ROT mode)
or in linear velocity (in RCS_LIN mode).
Set RCS_NONE to disable the RCS.

See also:

GetAttitudeMode, RCS mode identifiers

8.51.3.191 int VESSEL::ToggleAttitudeMode () const

Switch between linear and rotational RCS mode.

Returns:

New RCS mode index

Note:

If the RCS is disabled, this method does nothing and returns 0.
During playback, this method does nothing and returns the current RCS mode.

See also:

SetAttitudeMode, GetAttitudeMode

8.51.3.192 void VESSEL::GetAttitudeRotLevel (VECTOR3 & th) const

Returns the current combined thrust levels for the reaction control system thruster groups in rotational
mode.

Parameters:

— th vector containing RCS thruster group levels for rotation around the 3 principal vessel axes (val-
ues: -1 to +1).

Note:

The fractional thrust levels of the RCS engines for rotation around the vessel’s X, y and z axis are
returned in the X, y, and z components of ¢, respectively.

The orientation of the vessel axes is implementation-dependent, but usually by convention, +x is
"right", +y is "up", and +z is "forward".

A value of +1 denotes maximum thrust in the positive direction around an axis, while -1 denotes
maximum thrust in the negative direction.

This method combines the results of calls to GetThrusterGroupLevel for all relevant RCS thruster
groups in the following combinations:

th.x THGROUP_ATT_PITCHUP -
THGROUP_ATT_PITCHDOWN

th.y THGROUP_ATT_YAWLEFT -
THGROUP_ATT_YAWRIGHT

th.z THGROUP_ATT_BANKRIGHT -
THGROUP_ATT _BANKLEFT

To obtain the actual thrust force magnitudes [N], the absolute values must be multiplied with the max.
attitude thrust.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 429

See also:

GetAttitudeLinLevel, SetAttitudeRotLevel, GetThrusterGroupLevel, GetAttitudeMode

8.51.3.193 void VESSEL::SetAttitudeRotLevel (const VECTOR3 & th) const

Set RCS thruster levels for rotation in all 3 vessel axes.

Parameters:

th RCS thruster levels for rotation around x,y,z axes (range -1...+1)

Note:

This method is functional even if the manual RCS input mode is set to linear.

See also:

SetAttitudeRotLevel(int,double)const, GetAttitudeRotLevel, SetAttitudeLinLevel

8.51.3.194 void VESSEL::SetAttitudeRotLevel (int axis, double th) const

Set RCS thruster level for rotation around a single axis.

Parameters:

axis rotation axis (0=x, 1=y, 2=z7)
th RCS thruster level (range -1...+1)

Note:

This method is functional even if the manual RCS input mode is set to linear.

See also:

SetAttitudeRotLevel(const VECTOR3&)const, GetAttitudeRotLevel, SetAttitudeLinLevel

8.51.3.195 void VESSEL::GetAttitudeLinLevel (VECTOR3 & th) const

Returns the current combined thrust levels for the reaction control system thruster groups in linear (trans-
lational) mode.

Parameters:

— th vector containing RCS thruster group levels for translation along the 3 principal vessel axes
(values: -1 to +1)

Note:

The fractional thrust levels of the RCS engines for translation along the vessel’s x, y and z axis are
returned in the X, y, and z components of ¢, respectively.

The orientation of the vessel axes is implementation-dependent, but usually by convention, +x is
"right", +y is "up", and +z is "forward".

A value of +1 denotes maximum thrust in the positive direction along an axis, while -1 denotes maxi-
mum thrust in the negative direction.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 430

This method combines the results of calls to GetThrusterGroupLevel for all relevant RCS thruster
groups in the following combinations:

th.x THGROUP_ATT_RIGHT -
THGROUP_ATT_LEFT

th.y THGROUP_ATT_UP -
THGROUP_ATT_DOWN

th.z THGROUP_ATT_FORWARD -
THGROUP_ATT_BACK

To obtain the actual thrust force magnitudes [N], the absolute values must be multiplied with the max.
attitude thrust.

See also:

GetAttitudeRotLevel, SetAttitudeLinLevel, GetThrusterGroupLevel, GetAttitudeMode

8.51.3.196 void VESSEL.::SetAfttitudeLinLevel (const VECTOR3 & th) const

Set RCS thruster levels for linear translation in all 3 vessel axes.

Parameters:

th RCS thruster levels (range -1...+1)

Note:

This method is functional even if the manual RCS input mode is set to rotational.

See also:

SetAttitudeLinLevel(int,double)const, SetAttitudeLinLevel, SetAttitudeRotLevel

8.51.3.197 void VESSEL::SetAttitudeLinLevel (int axis, double ¢/) const

Set RCS thruster level for linear translation along a single axis.

Parameters:

axis translation axis (0=x, 1=y, 2=7)
th RCS thruster level (range -1...+1)

Note:

This method is functional even if the manual RCS input mode is set to rotational.

See also:

SetAttitudeLinLevel(const VECTOR3&)const, SetAttitudeLinLevel, SetAttitudeRotLevel

8.51.3.198 int VESSEL::SendBufferedKey (DWORD key, bool down = t rue, char * kstate = 0)

Send a simulated buffered key event to the vessel.

Parameters:

key key code

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 431

down key down event flag

kstate key state map for additional modifier keys

Returns:

Process flag (O=key not processed, 1=key processed)

Note:

This method simulates a manual keyboard press and can be used to trigger actions associated with the
key.
If down = true, a key down event is simulated. Otherwise, a key up event is simulated.
Additional modifier keys (e.g. Ctrl, Shift, Alt) can be set by passing a kstate array with the appropriate
keys defined.
This method triggers a call to VESSEL2::clbkConsumeBufferedKey. If not consumed by the callback
function, the key event is offered to the default key handler.

See also:

VESSEL2::clbkConsumeBufferedKey

8.51.3.199 void VESSEL::InitNavRadios (DWORD nnav) const

Defines the number of navigation (NAV) radio receivers supported by the vessel.

Parameters:

nnav number of NAV radio receivers

Note:

A vessel requires NAV radio receivers to obtain instrument navigation aids such as ILS or docking
approach information.
If no NAV receivers are available, then certain MFD modes such as Landing or Docking will not be
supported.
Default is 2 NAV receivers.

See also:

GetNavCount

8.51.3.200 DWORD VESSEL::GetNavCount () const

Returns the number of NAV radio receivers.

Returns:

Number of NAV receivers (>=0)

See also:

InitNavRadios

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 432

8.51.3.201 bool VESSEL::SetNavChannel (DWORD r, DWORD ch) const

Sets the channel of a NAV radio receiver.

Parameters:

n receiver index (>=0)

ch channel (>=0)

Returns:

false on error (receiver index or channel out of range), true otherwise

Note:

NAV radios can be tuned from 108.00 to 139.95 MHz in steps of 0.05 MHz, corresponding to channels
0 to 639.

See also:

InitNavRadios, GetNavChannel

8.51.3.202 DWORD VESSEL::GetNavChannel (DWORD r) const

Returns the current channel setting of a NAV radio receiver.

Parameters:

n receiver index (>=0)

Returns:

Receiver channel [0..639]. If index n is out of range, the return value is 0.

See also:

GetNavRecvFreq, SetNavChannel

8.51.3.203 float VESSEL::GetNavRecvFreq (DWORD =) const

Returns the current radio frequency of a NAV radio receiver.

Parameters:

n receiver index (>=0)

Returns:

Receiver frequency [MHz] (range 108.00 to 139.95). If index n is out of range, the return value is 0.0.

See also:

GetNavChannel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 433

8.51.3.204 void VESSEL::EnableTransponder (bool enable) const

Enable/disable transmission of transponder signal.

Parameters:

enable true to enable the transponder, false to disable.

Note:

The transponder is a radio transmitter which can be used by other vessels to obtain navigation infor-
mation, e.g. for docking rendezvous approaches.

If the transponder is turned on (enable = true), its initial frequency is set to 108.00 MHz (channel 0).
Use SetTransponderChannel to tune to a different frequency.

See also:

SetTransponderChannel, SetIDSChannel

8.51.3.205 bool VESSEL::SetTransponderChannel (DWORD ch) const

Switch the channel number of the vessel’s transponder.

Parameters:

ch transponder channel [0..639]

Returns:

false indicates failure (transponder not enabled or input parameter out of range)

Note:
Transponders can be tuned from 108.00 to 139.95 MHz in steps of 0.05 MHz. The frequency corre-
sponding to a channel number ch is given by f = (108.0 + 0.05 ch) MHz.

See also:

EnableTransponder, SetNavChannel

8.51.3.206 void VESSEL::EnableIDS (DOCKHANDLE hDock, bool bEnable) const

Enable/disable one of the vessel’s IDS (Instrument Docking System) transmitters.

Parameters:

hDock docking port handle
bEnable true to enable, false to disable the IDS for the dock.

Note:
If the IDS transmitter is turned on (bEnable = true), its channel is initially set to O (transmitter fre-
quency 108.00 MHz). Use SetIDSChannel to tune to a different channel.

See also:

SetIDSChannel, EnableTransponder

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 434

8.51.3.207 bool VESSEL::SetIDSChannel (DOCKHANDLE hDock, DWORD ch) const

Switch the channel number of one of the vessel’s IDS (Instrument Docking System) transmitters.

Parameters:

hDock docking port handle
ch 1IDS channel [0..639]

Returns:

false indicates failure (IDS not enabled or input parameter out of range)

Note:
IDS transmitters can be tuned from 108.00 to 139.95 MHz in steps of 0.05 MHz. The frequency
corresponding to a channel number c# is given by f = (108.0 + 0.05 ch) MHz.

See also:

EnablelDS, SetTransponderChannel, SetNavChannel

8.51.3.208 NAVHANDLE VESSEL::GetTransponder () const

Return handle of vessel transponder if available.

Returns:

Navigation radio handle of the vessel’s transponder, or NULL if not available.

Note:

This function returns NULL unless the transponder has been enabled by a call to EnableTransponder
or by setting the EnableXPDR entry in the vessel’s config file to TRUE.
It is not safe to store the handle, because it can become invalid as a result of disabling/enabling the
transponder. Instead, the handle should be queried when needed.
The handle can be used to retrieve information about the transmitter, such as current frequency.

See also:

EnableTransponder, SetTransponderChannel

8.51.3.209 NAVHANDLE VESSEL::GetIDS (DOCKHANDLE hDock) const

Return handle of one of the vessel’s instrument docking system (IDS) radio transmitters.

Parameters:

hDock docking port handle

Returns:

Navigation radio handle of the vessel’s IDS transmitter for docking port ~Dock.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 435

Note:

This function returns NULL if hDock does not define an IDS transmitter.
Docking port handles are returned by the CreateDock and GetDockHandle methods.
The IDS handle becomes invalid when the dock is deleted (e.g. as a result of DelDock or ClearDock-
Definitions).
The handle returned by this function can be used to retrieve information about the transmitter, such as
sender frequency.

See also:

CreateDock, GetDockHandle, DelDock, ClearDockDefinitions, EnableIDS, GetTransponder

8.51.3.210 NAVHANDLE VESSEL::GetNavSource (DWORD r) const

Return handle of transmitter source currently received by one of the vessel’s NAV receivers.

Parameters:

n NAV receiver index (>=0)

Returns:
handle of transmitter currently received, or NULL if the receiver is not tuned to any station, or if n is
out of range.

Note:

The handle returned by this function may change in consecutive calls, depending on the radio fre-
quency of the corresponding receiver, the vessel position and the position of radio transmitters in the
range of the receiver.

8.51.3.211 void VESSEL::SetCameraOffset (const VECTOR3 & co) const

Set the camera position for internal (cockpit) view.

Parameters:

co camera offset in vessel coordinates [m]

Note:

The camera offset can be used to define the pilot’s eye position in the spacecraft.

The default offset is (0,0,0).

This function is called typically either globally in VESSEL2::clbkSetClassCaps, if the camera po-
sition doesn’t change between views, or individually in VESSEL2::clbkL.oadGenericCockpit, VES-
SEL2::clbkLoadPanel and VESSEL2::clbkLoadVC for each defined view.

See also:

GetCameraOffset

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 436

8.51.3.212 void VESSEL::GetCameraOffset (VECTOR3 & co) const

Returns the current camera position for internal (cockpit) view.

Parameters:

co camera offset in vessel coordinates [m]

See also:

SetCameraOffset

8.51.3.213 void VESSEL::SetCameraDefaultDirection (const VECTOR3 & cd) const

Set the default camera direction for internal (cockpit) view.

Parameters:

cd new default direction in vessel coordinates

Note:

By default, the default direction is (0,0,1), i.e. forward.

The supplied direction vector must be normalised to length 1.

Calling this function automatically sets the current actual view direction to the default direction.

This function can either be called during VESSEL2::clbkSetClassCaps, to define the default
camera direction globally for the vessel, or during VESSEL2::clbkLoadGenericCockpit, VES-
SEL2::clbkLoadPanel and VESSEL?2::clbkLoadVC, to define different default directions for different
instrument panels or virtual cockpit positions.

In Orbiter, the user can return to the default direction by pressing the Home key on the cursor key pad.

See also:

SetCameraDefaultDirection(const VECTOR3&,double)const, GetCameraDefaultDirection, VES-
SEL2::clbkSetClassCaps, VESSEL2::clbkLoadGenericCockpit, VESSEL2::clbkLoadPanel, VES-
SEL2::clbklLoadVC

8.51.3.214 void VESSEL::SetCameraDefaultDirection (const VECTOR3 & cd, double tilf) const

Set the default camera direction and tilt angle for internal (cockpit) view.

Parameters:

cd new default direction in vessel coordinates

tilt camera tilt angle around the default direction [rad]

Note:

This function allows to set the camera tilt angle in addition to the default direction.

By default, the default direction is (0,0,1), i.e. forward, and the tilt angle is O (upright).

The supplied direction vector must be normalised to length 1.

The tilt angle should be in the range [-Pi,+Pi]

Calling this function automatically sets the current actual view direction to the default direction.

See also:

SetCameraDefaultDirection(const VECTOR3&)const, GetCameraDefaultDirection

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 437

8.51.3.215 void VESSEL::GetCameraDefaultDirection (VECTOR3 & cd) const

Returns the default camera direction for internal (cockpit) view.

Parameters:

cd default camera direction in vessel coordinates

Note:

The default camera direction may change as a result of invoking SetCameraDefaultDirection, typically
when the user selects a different instrument panel or virtual cockpit position.
The returned direction vector is normalised to length 1.

See also:

SetCameraDefaultDirection(const VECTOR3&)const, SetCameraDefaultDirection(const VEC-
TOR3&,double)const

8.51.3.216 void VESSEL::SetCameraCatchAngle (double cangle) const

Set the angle over which the cockpit camera auto-centers to default direction.

Parameters:

cangle auto-center catchment angle [rad]

Note:

The cockpit camera auto-centers to its default ("forward") direction when it is close enough to this
direction. This function can be used to specify the angle over which auto-centering occurs.

Setting cangle=0 disables the auto-centering function.

The default catchment angle is 5 degrees (5.0«RAD).

To reset the catchment angle globally for all cockpit views of the vessel, SetCameraCatchAngle would
typically used in VESSEL2::clbkSetClassCaps(). To reset the catchment angle for individual cockpit
positions, the function would be used for the appropriate cockpit modes in VESSEL2::clbkLoadPanel()
and VESSEL2::clbklLoadVC().

8.51.3.217 void VESSEL::SetCameraRotationRange (double left, double right, double up, double
down) const

Sets the range over which the cockpit camera can be rotated from its default direction.

Parameters:

left rotation range to the left [rad]
right rotation range to the right [rad]
up rotation range up [rad]

down rotation range down [rad]

Note:

The meaning of the "left", "right", "up" and "down" directions is given by the orientation of the local
vessel frame. For a default view direction of (0,0,1), "left" is a rotation towards the -x axis, "right" is

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 438

a rotation towards the +x axis, "up" is a rotation towards the +y axis, and "down" is a rotation towards
the -y axis.
All ranges must be >= 0. The left and right ranges should be < Pi. The up and down ranges should be
< Pi/2.
The default values are 0.8Pi for left and right ranges, and 0.4Pi for up and down ranges.

See also:

SetCameraShiftRange, SetCameraMovement

8.51.3.218 void VESSEL::SetCameraShiftRange (const VECTOR3 & fpos, const VECTOR3 &
Ipos, const VECTOR3 & rpos) const

Set the linear movement range for the cockpit camera.

Defining a linear movement allows the user to move the head forward or sideways, e.g. to get a better look
out of a window, or a closer view of a virtual cockpit instrument panel.

Parameters:

Jpos offset vector when leaning forward [m]
Ipos offset vector when leaning left [m]

rpos offset vector when leaning right [m]

Note:

If a linear movement range is defined with this function, the user can ’lean’ forward or sideways using
the *cockpit slew’ keys. Supported keys are:

Name default action
CockpitCamDontLean Ctrl+Alt+Down return to default position
CockpitCamLeanForward Ctrl+Alt+Up lean forward
CockpitCamLeanLeft Ctrl+Alt+Left lean left
CockpitCamLeanRight Ctrl+Alt+Right lean right

The movement vectors are taken relative to the default cockpit position defined via SetCameraOffset.
This function should be called when initialising a cockpit mode (e.g. in clbkLoadPanel or
clbkLoadVC). By default, Orbiter resets the linear movement range to zero whenever the cockpit
mode changes.

In addition to the linear movement, the camera also turns left when leaning left, turns right when
leaning right, and returns to default direction when leaning forward. For more control over camera
rotation at the different positions, use SetCameraMovement instead.

See also:

SetCameraMovement, SetCameraRotationRange

8.51.3.219 void VESSEL::SetCameraMovement (const VECTOR3 & fpos, double fphi, double ftht,
const VECTORS3 & Ipos, double Iphi, double ltht, const VECTOR3 & rpos, double rphi, double rtht)
const

Set both linear movement range and orientation of the cockpit camera when "leaning" forward, left and
right.
Parameters:

Jpos offset vector when leaning forward [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 439

Jphi camera rotation azimuth angle when leaning forward [rad]
Jtht camera rotation polar angle when leaning forward [rad]
Ipos offset vector when leaning left [m]

Iphi camera rotation azimuth angle when leaning left [rad]

Itht camera rotation polar angle when leaning left [rad]

rpos offset vector when leaning right [m]

rphi camera rotation azimuth angle when leaning right [rad]

rtht camera rotation polar angle when leaning right [rad]

Note:

This function is an extended version of SetCameraShiftRange.

It is more versatile, because in addition to the linear camera movement vectors, it also allows to define
the camera orientation (via azimuth and polar angle relative to default view direction). This allows to
point the camera to a particular cockpit window, instrument panel, etc.

See also:

SetCameraShiftRange, SetCameraRotationRange

8.51.3.220 void VESSEL::ClearMeshes (bool retain_anim) const

Remove all mesh definitions for the vessel.

Parameters:

retain_anim flag for retaining mesh animation objects

Note:

If retain_anim is false, all animations defined for the vessel are deleted together with the meshes. If
true, the animations stay behind. This is only useful if the same meshes are subsequently added again
in the same order, so that the animations point to the appropriate meshes and mesh groups and can be
re-used. If different meshes are loaded later, the behaviour of the animations becomes undefined.

In the future, obsolete method ClearMeshes()const will be removed, and retain_anim will have a de-
fault value of false.

8.51.3.221 UINT VESSEL::AddMesh (const char x meshname, const VECTORS3 x ofs = 0) const

Load a mesh definition for the vessel from a file.

Parameters:

meshname mesh file name

ofs optional pointer to a displacement vector which describes the offset of the mesh origin against the
vessel origin [m].

Returns:

mesh index

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 440

Note:

meshname defines a path to an existing mesh file. The mesh must be in Orbiter’s MSH format (see
3DModel.pdf).

The file name (including optional directory path) is relative to Orbiter’s mesh directory (usually
".\\Meshes"). The file extension must not be specified (.msh is assumed.)

The mesh is either appended to the end of the vessel’s mesh list, or inserted at the location of a
previously deleted mesh (see VESSEL::DelMesh)

The returned value is the mesh list index at which the mesh reference was stored. It can be used to
identify the mesh later (e.g. for animations).

This function only creates a reference to a mesh, but does not directly load the mesh from frile. The
mesh is physically loaded only when it is required (whenever the vessel moves within visual range of
the observer camera).

See also:

AddMesh(MESHHANDLE,const VECTOR3x)const, DelMesh

8.51.3.222 UINT VESSEL::AddMesh (MESHHANDLE hMesh, const VECTOR3 * ofs = 0) const

Add a pre-loaded mesh definition to the vessel.

Parameters:

hMesh mesh handle

ofs optional pointer to a displacement vector which describes the offset of the mesh origin against the
vessel origin [m].
Returns:

mesh index

Note:

hMesh is a handle to a mesh previously loaded with oapiLoadMeshGlobal.

The global handle hMesh repersents a "mesh template". Whenever the vessel needs to create its visual
representation (when moving within visual range of the observer camera), it creates its individual mesh
as a copy of the template.

See also:

AddMesh(const charx,const VECTOR3x)const, oapiLoadMeshGlobal, DelMesh

8.51.3.223 UINT VESSEL::InsertMesh (const char x meshname, UINT idx, const VECTORS3 x* ofs
= 0) const

Insert or replace a mesh at a specific index location of the vessel’s mesh list.

Parameters:

meshname mesh file name
idx mesh list index (>=0)

ofs optional pointer to a displacement vector which describes the offset of the mesh origin against the
vessel origin [m].

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 441

Returns:

mesh index

Note:

meshname defines a path to an existing mesh file. The mesh must be in Orbiter’s MSH format.

The file name (including optional directory path) is relative to Orbiter’s mesh directory (usually
".\\Meshes"). The file extension should not be specified (.msh is assumed.)

idx is a zero-based index which specifies at which point the mesh reference is added into the vessel’s
mesh list. If a mesh already exists at this position, it is overwritten. If idx > number of meshes, then
the required number of (empty) entries is generated.

The return value is always equal to idx.

See also:

InsertMesh(MESHHANDLE,UINT,const VECTOR3x*)const, AddMesh(const charx,const
VECTOR3x)const, AddMesh(MESHHANDLE,const VECTOR3:x)const

8.51.3.224 UINT VESSEL::InsertMesh (MESHHANDLE hMesh, UINT idx, const VECTORS3 x ofs
= 0) const

Insert or replace a mesh at a specific index location of the vessel’s mesh list.

Parameters:
hMesh mesh handle
idx mesh list index (>=0)

ofs optional pointer to a displacement vector which describes the offset of the mesh origin against the
vessel origin [m].

Returns:

mesh index

Note:

hMesh is a handle to a mesh previously loaded with oapiLoadMeshGlobal.

The global handle hMesh represents a "mesh template". Whenever the vessel needs to create its visual
representation (when moving within visual range of the observer camera), it creates its individual mesh
as a copy of the template.

idx is a zero-based index which specifies at which point the mesh reference is added into the vessel’s
mesh list. If a mesh already exists at this position, it is overwritten. If idx > number of meshes, then
the required number of (empty) entries is generated.

The return value is always equal to idx.

See also:

InsertMesh(const charx,UINT,const VECTOR3x)const, AddMesh(const char*,const
VECTOR3x)const, AddMesh(MESHHANDLE,const VECTOR3:x)const

8.51.3.225 bool VESSEL::DelMesh (UINT idx, bool retain_anim = £alse) const

Remove a mesh from the vessel’s mesh list.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 442

Parameters:
idx mesh list index (>= 0)

retain_anim flag for keeping mesh animations

Returns:

true on success, false to indicate failure (index out of range, or mesh already deleted.)

Note:

After a mesh has been deleted, the mesh index is no longer valid, and should not be used any more in
function calls (e.g. for animations).

If meshes are added subsequently, they are placed in the vacant list slots, and therefore can be assigned
the indices of previously deleted meshes.

If you want to replace a mesh, it is easier to use the InsertMesh function instead of a combination of
DelMesh and AddMesh.

By default, all animation components associated with the mesh are deleted. This can be prevented by
setting retain_anim to true. In general this is only useful if the same mesh is subsequently loaded again
into the same mesh index slot. In all other cases, retaining the animations of deleted meshes can lead
to undefined behaviour.

See also:

InsertMesh, AddMesh, ClearMeshes

8.51.3.226 bool VESSEL::ShiftMesh (UINT idx, const VECTOR3 & ofs) const

Shift the position of a mesh relative to the vessel’s local coordinate system.

Parameters:

idx mesh list index (>=0)

ofs translation vector [m]

Returns:

true on success, false indicates error (index out of range).

Note:

This function does not define an animation (i.e. gradual transition), but resets the mesh position in-
stantly.

See also:

ShiftMeshes, GetMeshOffset

8.51.3.227 void VESSEL::ShiftMeshes (const VECTORS3 & ofs) const

Shift the position of all meshes relative to the vessel’s local coordinate system.

Parameters:

ofs translation vector [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 443

Note:

This function is useful when resetting a vessel’s centre of gravity, in combination with ShiftCentreOf-
Mass.
A more convenient way to shift the centre of gravity is a call to ShiftCG.

See also:

ShiftMesh, GetMeshOffset, ShiftCentreOfMass, ShiftCG

8.51.3.228 bool VESSEL::GetMeshOffset (UINT idx, VECTOR3 & ofs) const

Returns the mesh offset in the vessel frame.

Parameters:

idx mesh index (0 <= idx < GetMeshCount())

— ofs mesh offset [m]

Returns:

true if idx refers to a valid mesh index

See also:

AddMesh, InsertMesh, ShiftMesh, ShiftMeshes

8.51.3.229 UINT VESSEL::GetMeshCount () const
Number of meshes.

Returns the number of meshes currently defined for the vessel

Returns:

mesh count (>= 0)

8.51.3.230 MESHHANDLE VESSEL::GetMesh (VISHANDLE vis, UINT idx) const
Obtain mesh handle for a vessel mesh.

Returns a handle for a vessel mesh instance. Mesh instances only exist while the vessel is within visual
range of the camera. This function should therefore only be called between VESSEL2::clbkVisualCreated
and VESSEL2::clbkVisualDestroyed, with the VISHANDLE provided by these functions.

Parameters:
vis identifies the visual for which the mesh was created
idx mesh index (0 <= idx < GetMeshCount())
Returns:
mesh handle
orbiter_ng:

The non-graphics version of Orbiter returns always NULL, even if a graphics client is attached. To
obtain a client-specific mesh handle, use GetDevMesh .

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 444

See also:

GetMeshTemplate, GetMeshCount, GetDevMesh

8.51.3.231 DEVMESHHANDLE VESSEL::GetDevMesh (VISHANDLE vis, UINT idx) const

Returns a handle for a device-specific mesh instance.

Parameters:

vis identifies the visual for which the mesh was created.
idx mesh index (0 <= idx < GetMeshCount())

Returns:

device mesh handle

Note:

For Orbiter_ng, this method returns a handle for a mesh instance managed by the external graphics
client. Graphics clients may implement their own mesh formats, so the object pointed to by the handle
is client-specific.

For inline graphics version, the returned handle points to the same object as the handle returned by
GetMesh .

See also:

GetMesh

8.51.3.232 const MESHHANDLE VESSEL::GetMeshTemplate (UINT idx) const
Obtain a handle for a vessel mesh template.

Returns the mesh handle for a pre-loaded mesh template, if available.

Parameters:

idx mesh index (0 <= idx < GetMeshCount())

Returns:

mesh template handle

Note:

Mesh templates can only be returned for meshes pre-loaded with oapilLoadMeshGlobal(). For all other
(load-on-demand) meshes this method returns NULL.

Mesh templates are resources shared between all vessels and should never be modified by individual
vessels. Orbiter creates individual copies of the templates whenever a vessel is rendered.

8.51.3.233 const charx VESSEL::GetMeshName (UINT idx) const
Obtain mesh file name for an on-demand mesh.

Returns the mesh file name (with path relative to Orbiter’s main mesh directory) for a vessel mesh that is
loaded on demand (i.e. not pre-loaded).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 445

Parameters:

idx mesh index (0 <=idx < GetMeshCount())

Returns:

mesh file name, or NULL if mesh is pre-loaded

Note:

The file names for pre-loaded meshes are not retained by Orbiter.
Graphics clients can obtain pre-loaded mesh file names by intercepting the
oapi::GraphicsClient::clbkStoreMeshPersistent() method.

8.51.3.234 MESHHANDLE VESSEL::CopyMeshFromTemplate (UINT idx) const

Make a copy of one of the vessel’s mesh templates.

Parameters:

idx mesh index

Returns:

handle of copied mesh

Note:

Meshes loaded with oapiLoadMeshGlobal are templates shared between all vessel instances and
should never be modified by individual vessels. If a vessel needs to modify its meshes, it should
operate on a copy of the template.

8.51.3.235 WORD VESSEL::GetMeshVisibilityMode (UINT idx) const

Returns the visibility flags for a vessel mesh.

Parameters:

idx mesh index (>=0)

Returns:

Visibility mode flags (see SetMeshVisibilityMode for possible values).

See also:

SetMeshVisibilityMode, Vessel mesh visibility flags

8.51.3.236 void VESSEL::SetMeshVisibilityMode (UINT idx, WORD mode) const

Set the visibility flags for a vessel mesh.

Parameters:

idx mesh index (>=0)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 446

mode visibility mode flags (see Vessel mesh visibility flags)

Note:

This method can be used to specify if a mesh is visible in particular camera modes. Some meshes may
only be visible in external views, while others should only be visible in cockpit views.

Turning off the unnecessary rendering of meshes can improve the performance of the simulator.
mode can be a combination of the Vessel mesh visibility flags.

The default mode after adding a mesh is MESHVIS_EXTERNAL.

MESHVIS_EXTPASS can’t be used on its own, but as a modifier to any of the other visibility modes.
If specified, it forces the mesh to be rendered in Orbiter’s external render pass, even if it is labelled as
internal (e.g. MESHVIS_COCKPIT or MESHVIS_VC). The significance of the external render pass
is that it allows the mesh to be obscured by other objects in front of it. However, objects in the external
render pass are clipped at a camera distance of 2.5m. Meshes that are rendered during the internal pass
always cover all other objects, and have a smaller clipping distance.

Use the MESHVIS_EXTPASS modifier for parts of the vessel that are visible from the cockpit, but
are not close to the camera and may be obscured by other objects. An example is the Shuttle payload
bay, which can be covered by payload objects.

See also:

GetMeshVisibilityMode, Vessel mesh visibility flags

8.51.3.237 bool VESSEL::MeshgroupTransform (VISHANDLE vis, const MESHGROUP._-
TRANSFORM & mt) const

Affine transformation of a mesh group.

Parameters:

vis vessel visual handle

mt transformation parameter structure

Returns:

true on success, false on failure (group index out of range)

orbiter_ng:

This function is not yet supported in orbiter_ng and always returns false.

8.51.3.238 int VESSEL::MeshModified (MESHHANDLE hMesh, UINT grp, DWORD modflag)

Notifies Orbiter of a change in a mesh group.

Parameters:

hMesh mesh handle
grp group index (>=0)
modflag type of modification (currently ignored)

Returns:

error code (0=0k)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 447

Note:

This method should be called if the components of a mesh group (vertices or indices) have been
modified, to allow Orbiter to propagate the changes to the render object.

For the built-in renderer, this registration is not strictly necessary, because it uses the mesh directly as
the render object, so any changes to the mesh groups are applied directly.

External graphics clients however may map the mesh data into device-specific data structures. In that
case, MeshModified tells the graphics subsystem to synchronise its mesh data.

MeshModified does not need to be called after applying an affine transformation of the mesh group
as a whole (MeshgroupTransform), because this is performed by assigning a transformation matrix,
rather than by modifying the vertex positions themselves.

See also:

oapiMeshGroup, oapiMeshGroupEx

8.51.3.239 void VESSEL::Register Animation () const
Logs a request for calls to VESSEL2::clbkAnimate.

Note:

This function allows to implement animation sequences in combination with the VES-
SEL2clbkAnimate callback function. After a call to RegisterAnimation, VESSEL2clbkAnimate is
called at each time step whenever the vessel’s visual object exists.

Use UnregisterAnimation to stop further calls to VESSEL2clbkAnimate.

Each call to RegisterAnimation increments a reference counter, while each call to UnregisterAnimation
decrements the counter. Orbiter continues calling VESSEL2clbkAnimate as long as the counter is
greater than 0.

If VESSEL2clbkAnimate is not overloaded by the module, RegisterAnimation has no effect.

The RegisterAnimation mechanism leaves the actual implementation of the animation (transfor-
mation of mesh groups, etc.) entirely to the module. The VESSEL::CreateAnimation / VES-
SEL::AddAnimationComponent mechanism is an alternative way to define animations where the trans-
formations are managed by the Orbiter core.

See also:

VESSEL2::clbkAnimate, UnregisterAnimation, CreateAnimation, AddAnimationComponent

8.51.3.240 void VESSEL::UnregisterAnimation () const

Unlogs an animation request.

Note:

This stops a request for animation callback calls from a previous RegisterAnimation.
The call to UnregisterAnimation should not be placed in the body of VESSEL2::clbkAnimate, since it
may be lost if the vessel’s visual doesn’t exist.

See also:

RegisterAnimation, VESSEL2::clbkAnimate

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 448

8.51.3.241 UINT VESSEL::CreateAnimation (double initial_state) const
Create a mesh animation object.

The sequence can contain multiple components (rotations, translations, scalings of mesh groups) with a
fixed temporal correlation. The animation is driven by manipulating its "state", which is a number between
0 and 1 used to linearly interpolate the animation within its range. See API User’s Guide for details.

Parameters:

initial_state the animation state corresponding to the unmodified mesh

Returns:
Animation identifier
Note:

After creating an animation, components can be added with AddAnimationComponent.

Use SetAnimation() to manipulate the animation state.

0 <= initial_state <=1 defines at which state the animation is stored in the mesh file. Example:
Landing gear animation between retracted state (0) and deployed state (1). If the landing gear is
retracted in the mesh file, set initial_state to 0. If it is deployed in the mesh file, set initial_state to 1.

See also:

DelAnimation, AddAnimationComponent

8.51.3.242 bool VESSEL::DelAnimation (UINT anim) const

Delete an existing mesh animation object.

Parameters:

anim animation identifier, as returned by CreateAnimation

Returns:

true if animation was deleted successfully

Note:

The animation is deleted by removing all the components associated with it. Subsequently, any calls
to SetAnimation using this animation index will not have any effect.

Before the animation is deleted, the mesh groups associated with the animation are reset to their default
(initial) positions. To avoid jumps in the visual appearance of the vessel, animations should therefore
only be deleted when the animation state has returned to the default state.

See also:
Create Animation
8.51.3.243 ANIMATIONCOMPONENT_HANDLE VESSEL::AddAnimationComponent

(UINT anim, double state0, double statel, MGROUP_TRANSFORM x ftrans,
ANIMATIONCOMPONENT_HANDLE parent = NULL) const

Add a component (rotation, translation or scaling) to an animation.

Optionally, animations can be stacked hierachically, where transforming a parent recursively also trans-
forms all its children (e.g. a wheel spinning while the landing gear is being retracted).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 449

Parameters:

anim animation identifier, as returned by Create Animation()
state0 animation cutoff state O for the component

statel animation cutoff state 1 for the component

trans transformation data (see notes)

parent parent transformation

Returns:

Animation component handle

Note:

state0 and statel (0..1) allow to define the temporal endpoints of the component’s animation within
the sequence. For example, state0=0 and statel=1 perform the animation over the whole duration of
the animation sequence, while state0=0 and state1=0.5 perform the animation over the first half of the
total animation. This allows to build complex animations where different components are animated in
a defined temporal sequence.

MGROUP_TRANSFORM is the base class for mesh group transforms. Derived classes provide sup-
port for rotations, translations and scaling.

To animate a complete mesh, rather than individual mesh groups, set the "grp" pointer to NULL in
the constructor of the corresponding MGROUP_TRANSFORM operator. The "ngrp" value is then
ignored.

To define a transformation as a child of another transformation, set parent to the handle returned by
the AddAnimationComponent call for the parent.

Instead of adding mesh groups to an animation, it is also possible to add a local VECTOR3 array. To
do this, set "mesh" to LOCALVERTEXLIST, and set "grp" to MAKEGROUPARRAY (vtxptr), where
vtxptr is the VECTOR3 array. "ngrp" is set to the number of vertices in the array. Example:

VECTOR3 vtx([2] = {_V(0,0,0), _V(1,0,-1)};

MGROUP_TRANSFORM xmt = new MGROUP_TRANSFORM (LOCALVERTEXLIST,
MAKEGROUPARRAY (vtx), 2);
AddAnimationComponent (anim, 0, 1, mt);

Transforming local vertices in this way does not have an effect on the visual appearance of the ani-
mation, but it can be used by the module to keep track of a transformed point during animation. The
Atlantis module uses this method to track a grappled satellite during animation of the RMS arm.

The ANIMATIONCOMPONENT_HANDLE is a pointer to a ANIMATIONCOMP structure.

Bug

When defining a scaling transformation as a child of a parent rotation, only homogeneous scaling is
supported, i.e. scale.x = scale.y = scale.z is required.

See also:

CreateAnimation, DelAnimationComponent, Animation flags

8.51.3.244 bool VESSEL::DelAnimationComponent (UINT anim, ANIMATIONCOMPONENT_-
HANDLE hAC)

Remove a component from an animation.

Parameters:

anim animation identifier

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 450

hAC animation component handle

Returns:

false indicates failure (anim out of range, or hAC invalid)

Note:

If the component has children belonging to the same animation, these will be deleted as well.
In the current implementation, the component must not have children belonging to other animations.
Trying to delete such a component will result in undefined behaviour.

See also:

AddAnimationComponent

8.51.3.245 Dbool VESSEL::SetAnimation (UINT anim, double state) const

Set the state of an animation.

Parameters:

anim animation identifier

state animation state (0 ... 1)

Returns:

false indicates failure (animation identifier out of range)

Note:

Each animation is defined by its state, with extreme points state=0 and state=1. When setting a state
between 0 and 1, Orbiter carries out the appropriate transformations to advance the animation to that
state. It is the responsibility of the code developer to call SetAnimation in such a way as to provide a
smooth movement of the animated parts.

8.51.3.246 UINT VESSEL::GetAnimPtr (ANIMATION xx anim) const

Returns a pointer to the array of animations defined by the vessel.

Parameters:

— anim pointer list of vessel animations

Returns:

list length (number of animations)

Note:

The pointer can become invalid whenever the vessel adds or deletes animations. It should therefore
not be stored, but queried on demand.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference

451

8.51.3.247 bool VESSEL::Recording () const

Flag for active recording session.

Returns:

true if flight recording is active, false otherwise.

See also:

Playback, RecordEvent

8.51.3.248 bool VESSEL::Playback () const

Flag for active playback session.

Returns:

true if the current session is a playback of a recorded flight, false otherwise.

See also:

Recording

8.51.3.249 void VESSEL::RecordEvent (const char * event_type, const char x event) const

Writes a custom tag to the vessel’s articulation data stream during a running recording session.

Parameters:

event_type event tag label

event event string

Note:

This function can be used to record custom vessel events (e.g. animations) to the articulation stream

(.atc) of a vessel record.

The function does nothing if no recording is active, so it is not necessary to check for a running

recording before invoking RecordEvent.

To read the recorded articulation tags during the playback of a recorded session, overload the VES-

SEL2::clbkPlaybackEvent callback function.

See also:

Recording, VESSEL2::clbkPlaybackEvent

8.51.3.250 void VESSEL::ShiftCentreOfMass (const VECTOR3 & shift)

Register a shift in the centre of mass after a structural change (e.g. stage separation).

Parameters:

shift centre of mass displacement vector [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 452

Note:

This function should be called after a vessel has undergone a structural change which resulted in a
shift of the vessel’s centre of gravity (CG). Note that in Orbiter, a vessel’s CG coincides by definition
always with the origin (0,0,0) of its local reference frame. Therefore, in order to achieve a shift of
the CG by a vector S, this function shifts the vessel’s global position by +S. This allows to shift the
meshes by -S, thus retaining their global position. The net result is unchanged mesh positions in the
global frame, but a shift of the local frame of reference (and thus CG) of +S.

The camera position is shifted to take into account the new CG. An external camera view performs a
smooth transition.

The shift of meshes (and any other reference positions defined in the local vessel frame, such as dock-
ing ports, etc.) is not performed by this function but must be executed separately. A more convenient
way to implement a transition of the centre of mass is the function ShiftCG, which automatically takes
care of translating meshes, docking ports, etc.

See also:

ShiftCG

8.51.3.251 void VESSEL::ShiftCG (const VECTOR3 & shift)

Shift the centre of gravity of a vessel.

Parameters:

shift centre of gravity displacement vector [m]

Note:

This function should be called after a vessel has undergone a structural change which resulted in a
shift of the vessel’s centre of gravity (CG). Note that in Orbiter, a vessel’s CG coincides by definition
always with the origin (0,0,0) of its local reference frame. Therefore, in order to achieve a shift of the
CG by shift, this function performs the following actions:

* Calls ShiftCentreOfMass (+shift) to align the vessel’s global position with the new CG position.
 Calls ShiftMeshes (-shift) to compensate the mesh positions
* Applies equivalent shift to all

— thruster positions,
— docking ports,

attachment points,

explicitly defined light source positions,

and to the cockpit camera position

The net effect is a shift of the vessel frame of reference (and thus the CG by +shift, while the mesh
positions remain in place in the global frame.

See also:

ShiftCentreOfMass, ShiftMeshes

8.51.3.252 bool VESSEL::GetSuperstructureCG (VECTOR3 & cg) const

Returns the centre of gravity of the superstructure to which the vessel belongs, if applicable.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 453

Parameters:

cg superstructure centre of gravity [m]

Returns:

true if the vessel is part of a superstructure, false otherwise.

Note:

The returned vector is the position of the superstructure centre of gravity, in coordinates of the local
vessel frame.
If the vessel is not part of a superstructure, cg returns (0,0,0).

8.51.3.253 void VESSEL::GetRotationMatrix (MATRIX3 & R) const

Returns the current rotation matrix for transformations from the vessel’s local frame of reference to the
global frame.

Parameters:

R rotation matrix

Note:

To transform a point rlocal from local vessel coordinates to a global point rglobal, the following for-
mula is used:

rglobal = R rlocal + pvessel,

where pvessel is the vessel’s global position.

This transformation can be directly performed by a call to Local2Global.

See also:

Local2Global, SetRotationMatrix, GlobalRot

8.51.3.254 void VESSEL::SetRotationMatrix (const MATRIX3 & R) const

Applies a rotation by replacing the vessel’s local to global rotation matrix.

Parameters:

R rotation matrix

Note:

The rotation matrix maps from the orientation of the vessel’s local frame of reference to the orientation
of the global frame (ecliptic at 2000.0).

The user is responsible for providing a valid rotation matrix. The matrix must be orthogonal and
normalised: the norms of all column vectors of R must be 1, and scalar products between any column
vectors must be 0.

See also:

GetRotationMatrix, Local2Global

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 454

8.51.3.255 void VESSEL::GlobalRot (const VECTOR3 & rloc, VECTOR3 & rglob) const

Performs a rotation of a direction from the local vessel frame to the global frame.

Parameters:

« rloc point in local vessel coordinates

— rglob rotated point

Note:
This function is equivalent to multiplying rloc with the rotation matrix returned by GetRotationMatrix.
Should be used to transform directions. To transform points, use Local2Global, which additionally
adds the vessel’s global position to the rotated point.

See also:

GetRotationMatrix, Local2Global

8.51.3.256 void VESSEL::HorizonRot (const VECTOR3 & rloc, VECTOR3 & rhorizon) const

Performs a rotation from the local vessel frame to the current local horizon frame.

Parameters:
«— rloc vector in local vessel coordinates
— rhorizon vector in local horizon coordinates
Note:
The local horizon frame is defined as follows:
* yis "up" direction (planet centre to vessel centre)
¢ 7 is "north" direction
e x is "east" direction
See also:

HorizonInvRot, GlobalRot, GetRotationMatrix, SetRotationMatrix

8.51.3.257 void VESSEL::HorizonInvRot (const VECTOR3 & rhorizon, VECTOR3 & rloc) const

Performs a rotation of a direction from the current local horizon frame to the local vessel frame.

Parameters:

« rhorizon vector in local horizon coordinates

—s rloc vector in local vessel coordinates
Note:

This function performs the inverse operation of HorizonRot.

See also:

HorizonRot, GlobalRot, GetRotationMatrix, SetRotationMatrix

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 455

8.51.3.258 void VESSEL::Local2Global (const VECTORS3 & local, VECTORS3 & global) const

Performs a transformation from local vessel coordinates to global coordinates.

Parameters:

«— local point in local vessel coordinates [m]

— global transformed point in global coordinates [m]

Note:

This function maps a point from the vessel’s local coordinate system (centered at the vessel CG) into
the global ecliptic system (centered at the solar system barycentre).
The transform has the form

ﬁg = Rvﬁl + ﬁw
where Ry is the vessel’s global rotation matrix (as given by GetRotationMatrix), and p,, is the vessel
position in the global frame.
See also:

GetRotationMatrix, Global2Local

8.51.3.259 void VESSEL::Global2Local (const VECTOR3 & global, VECTOR3 & local) const

Performs a transformation from global to local vessel coordinates.

Parameters:

<« global point in global coordinates [m]

— local transformed point in local vessel coordinates [m]

Note:

This is the inverse transform of Local2Global. It maps a point from global ecliptic coordinates into the
vessel’s local frame.
The transformation has the form

i =R, By — Po)
where Ry is the vessel’s global rotation matrix (as given by GetRotationMatrix), and p,, is the vessel
position in the global frame.
See also:

GetRotationMatrix, Local2Global

8.51.3.260 void VESSEL::Local2Rel (const VECTOR3 & local, VECTOR3 & rel) const

Performs a transformation from local vessel coordinates to the ecliptic frame centered at the vessel’s refer-
ence body.

Parameters:

<« local point in local vessel coordinates [m]

— rel transformed point in reference body-relative ecliptic coordinates [m].

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 456

Note:

This function maps a point from the vessel’s local coordinate system into an ecliptic system centered
at the centre of mass of the vessel’s gravity reference object (the celestial body that is currently being
orbited).

A handle to the reference object can be obtained via GetGravityRef. The reference object may change
if the vessel enters a different object’s sphere of influence.

The transformation has the form

ﬁ’l‘ = Rv@ +ﬁv - ﬁref
where Ry is the vessel’s global rotation matrix (as given by GetRotationMatrix), p,, is the vessel’s
global position, and Py is the reference body’s global position.

See also:

GetRotationMatrix, Global2Local, Local2Global, GetGravityRef

8.51.3.261 DOCKHANDLE VESSEL::CreateDock (const VECTOR3 & pos, const VECTOR3 &
dir, const VECTOR3 & rot) const

Create a new docking port.

Parameters:

pos dock reference position in vessel coordinates [m]
dir approach direction in vessel coordinates.

rot longitudinal rotation alignment vector

Returns:

Handle for the new docking port.

Note:

The dir and rot vectors should be normalised to length 1.
The rot vector should be perpendicular to the dir vector.
When two vessels connect at their docking ports, the relative orientation of the vessels is defined such
that their respective approach direction vectors (dir) are anti-parallel, and their longitudinal alignment
vectors (rot) are parallel.

See also:

DelDock, ClearDockDefinitions, GetDockParams, SetDockParams, DockCount, GetDockHandle,
GetDockStatus, Dock, Undock

8.51.3.262 bool VESSEL::DelDock (DOCKHANDLE hkDock) const

Delete a previously defined docking port.

Parameters:

hDock dock handle

Returns:

false indicates failure (invalid dock handle)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 457

Note:

Any object docked at the port will be undocked before the docking port is deleted.

See also:

CreateDock, ClearDockDefinitions, DockCount, Dock, Undock

8.51.3.263 void VESSEL.::ClearDockDefinitions () const

Delete all docking ports defined for the vessel.

Note:

Any docked objects will be undocked before deleting the docking ports.

See also:

CreateDock, DelDock, DockCount, Dock, Undock

8.51.3.264 void VESSEL::SetDockParams (const VECTOR3 & pos, const VECTOR3 & dir, const
VECTORS3 & rot) const

Set the parameters for the vessel’s primary docking port (port 0), or create a new dock if required.

Parameters:

pos dock reference position in vessel coordinates [m]
dir approach direction in vessel coordinates

rot longitudinal rotation alignment vector

Note:

This function creates a new docking port if none was previously defined.
See CreateDock for additional notes on the parameters.

See also:

SetDockParams(DOCKHANDLE,const VECTOR3&,const VECTOR3&,const VECTOR3&)const,
GetDockParams, CreateDock, DelDock, DockCount, Dock, Undock

8.51.3.265 void VESSEL::SetDockParams (DOCKHANDLE hDock, const VECTOR3 & pos, const
VECTOR3 & dir, const VECTOR3 & rot) const

Reset the parameters for a vessel docking port.

Parameters:

hDock dock handle
pos new dock reference position [m]
dir new approach direction

rot new longitudinal rotation alignment vector

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 458

Note:
This function should not be called while the docking port is engaged.
The dir and rot direction vectors should be normalised to length 1.
See also:

SetDockParams(const VECTOR3&,const VECTOR3&,const VECTOR3&)const, GetDockParams,
CreateDock, DelDock, DockCount, Dock, Undock

8.51.3.266 void VESSEL::GetDockParams (DOCKHANDLE hDock, VECTOR3 & pos, VEC-
TOR3 & dir, VECTOR3 & rot) const

Returns the paramters of a docking port.

Parameters:

< hDock dock handle
— pos dock reference position [m]
— dir approach direction

— rot longitudinal rotation alignment vector

See also:

CreateDock, SetDockParams(const VECTOR3&,const VECTOR3&,const VECTOR3&)const, Set-
DockParams(DOCKHANDLE,const VECTOR3&,const VECTOR3&,const VECTOR3&)const

8.51.3.267 UINT VESSEL::DockCount () const

Returns the number of docking ports defined for the vessel.

Returns:

Number of docking ports.

See also:

CreateDock, DelDock, ClearDockDefinitions

8.51.3.268 DOCKHANDLE VESSEL::GetDockHandle (UINT =) const

Returns a handle to a docking port.

Parameters:

n docking port index (>=0)

Returns:

Dock handle, or NULL if index is out of range.

See also:

CreateDock, DelDock, SetDockParams, GetDockParams, GetDockStatus, oapiGetDockHandle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference

459

8.51.3.269 OBJHANDLE VESSEL::GetDockStatus (DOCKHANDLE hDock) const

Returns a handle to a docked vessel.

Parameters:

hDock dock handle

Returns:

Handle of the vessel docked at the specified port, or NULL if the docking port is not engaged.

See also:

CreateDock, GetDockHandle, Dock, Undock, oapiGetDockStatus

8.51.3.270 UINT VESSEL::DockingStatus (UINT port) const

Returns a status flag for a docking port.

Parameters:

port docking port index (>=0)

Returns:

Docking status (O=free, 1=engaged)

Note:
This method has the same functionality as

(GetDockStatus (GetDockHandle (port)) ? 1:0)

See also:

GetDockStatus, GetDockHandle

8.51.3.271 int VESSEL::Dock (OBJHANDLE target, UINT n, UINT #gtn, UINT mode) const

Dock to another vessel.

Parameters:

target handle of docking target vessel
n docking port index on vessel (>= 0)
tgtn docking port index on target (>= 0)

mode attachment mode (see notes)

Returns:
* O=0k
* l=docking port n on the vessel already in use
» 2=docking port 7gtn on the target already in use

» 3=target vessel already part of the vessel’s superstructure

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 460

Note:

This function is useful for designing scenario editors and during startup configuration, but its use
should be avoided during a running simulation, because it can lead to unphysical situations: it allows
to dock two vessels regardless of their current separation, by teleporting one of them to the location of
the other.

During a simulation, Orbiter will dock two vessels automatically when their docking ports are brought
into close proximity.

The mode parameter determines how the vessels are connected. The following settings are supported:

* 0: calculate the linear and angular moments of the superstructure from the moments of the dock-
ing components. This should only be used if the two vessels are already in close proximity and
aligned for docking.

* 1: Keep this in place, and teleport the target vessel for docking

» 2: Keep the target in place, and teleport this for docking.

See also:

Undock, GetDockHandle, GetDockStatus, DockCount

8.51.3.272 bool VESSEL::Undock (UINT #n, const OBJHANDLE exclude = 0) const

Release a docked vessel from a docking port.

Parameters:

n docking port index (>= 0 or ALLDOCKS)

exclude optional handle of a vessel to be excluded from undocking

Returns:

true if at least one vessel was released from a port.

Note:

If n is set to ALLDOCKS, all docking ports are released simultaneously.
If exclude is nonzero, this vessel will not be undocked. This is useful for implementing remote un-
docking in combination with ALLDOCKS.

See also:

Dock, GetDockHandle, GetDockStatus, DockCount

8.51.3.273 void VESSEL::SetDockMode (int mode) const
Set the docking approach mode for all docking ports.

Parameters:

mode docking mode (see notes)

Note:

Defines the method Orbiter applies to establish a docking connection between two vessels. Supported
values are:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 401

* 0: use legacy (2006) method: snap to dock as soon as two docking ports are within 0.5m and
closing.

¢ 1 (default): use new (2010) method: snap to dock as soon as one docking reference point passes
through the reference plane of the other dock within 0.5m.

If the two docking vessels use different docking modes, the method used is unpredictable, depending
on which vessel initiates the docking event.

8.51.3.274 ATTACHMENTHANDLE VESSEL::CreateAttachment (bool foparent, const VEC-
TOR3 & pos, const VECTOR3 & dir, const VECTOR3 & rot, const char * id, bool loose = false)
const

Define a new attachment point for a vessel.

Parameters:

toparent 1If true, the attachment can be used to connect to a parent (i.e. the vessel acts as a child).
Otherwise, attachment is used to connect to a child (i.e. vessel acts as parent)

pos attachment point position in vessel coordinates [m]
dir attachment direction in vessel coordinates

rot longitudinal alignment vector in vessel coordinates
id compatibility identifier

loose If true, allow loose connections (see notes)

Returns:

Handle to new attachment point

Note:

A vessel can define multiple parent and child attachment points, and can subsequently have multiple
children attached, but it can only be attached to a single parent at any one time.

The dir and rot vectors should both be normalised to length 1, and they should be orthogonal.

The identifier string can contain up to 8 characters. It can be used to define compatibility between
attachment points.

If the attachment point is defined as loose, then the relative orientation between the two attached objects
is frozen to the orientation between them at the time the connection was established. Otherwise, the
two objects snap to the orientation defined by their dir vectors.

See also:

SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttachmentStatus, Attachment-
Count, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.275 bool VESSEL::DelAttachment (ATTACHMENTHANDLE attachment) const

Delete an attachment point.

Parameters:

attachment attachment handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 462

Returns:

false indicates failure (invalid attachment handle)

Note:

The attachment handle can refer to either a child or parent attachment point.
Any object attached to this point will be released.
After this function returns successfully, the attachment handle is no longer valid.

See also:

CreateAttachment

8.51.3.276 void VESSEL.::ClearAttachments () const

Delete all attachment points defined for the vessel.

Note:

Any attached parent or child vessels will be released.
After this function returns, all previously defined attachment handles will no longer be valid.

8.51.3.277 void VESSEL::SetAttachmentParams (ATTACHMENTHANDLE attachment, const
VECTOR3 & pos, const VECTOR3 & dir, const VECTOR3 & rot) const

Reset attachment position and orientation for an existing attachment point.

Parameters:

attachment attachment handle
pos new attachment point position in vessel coordinates [m]
dir new attachment direction in vessel coordinates

rot new longitudinal alignment vector in vessel coordinates

Note:

If the parameters of an attachment point are changed while a vessel is attached to that point, the
attached vessel will be shifted to the new position automatically.
The dir and rot vectors should both be normalised to length 1, and they should be orthogonal.

See also:

CreateAttachment, GetAttachmentParams, GetAttachmentld, GetAttachmentStatus, Attachment-
Count, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.278 void VESSEL::GetAttachmentParams (ATTACHMENTHANDLE attachment, VEC-
TOR3 & pos, VECTORS3 & dir, VECTORS3 & rot) const

Retrieve the parameters of an attachment point.

Parameters:

«— attachment attachment handle

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 463

— pos attachment point position in vessel coordinates [m]
— dir attachment direction in vessel coordinates

— rot longitudinal alignment vector in vessel coordinates

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentld, GetAttachmentStatus, Attachment-
Count, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.279 const charx VESSEL::GetAttachmentld (ATTACHMENTHANDLE attachment) const

Retrieve attachment identifier string.

Parameters:

attachment attachment handle

Returns:

Pointer to attachment string [8 characters]

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentStatus, Attachment-
Count, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.280 OBJHANDLE VESSEL::GetAttachmentStatus ATTACHMENTHANDLE attachment)
const

Return the current status of an attachment point.

Parameters:

attachment attachment handle

Returns:

Handle of tha attached vessel, or NULL if no vessel is attached to this point.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, Attachment-
Count, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.281 DWORD VESSEL::AttachmentCount (bool foparent) const

Return the number of child or parent attachment points defined for the vessel.

Parameters:

toparent 1If true, return the number of attachment points to parents. Otherwise, return the number of
attachment points to children.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 464

Returns:

Number of defined attachment points to connect to parents or to children.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttach-
mentStatus, GetAttachmentIndex, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.282 DWORD VESSEL::GetAttachmentIndex (ATTACHMENTHANDLE attachment) const

Return the list index of the vessel’s attachment point defined by its handle.

Parameters:

attachment attachment handle

Returns:

List index (>=0)

Note:

A vessel defines separate lists for child and parent attachment points. Therefore two different attach-
ment points may return the same index.

The index for a given attachment point can change when the vessel deletes any of its attachments. The
returned index should therefore be used only within the current frame.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttach-
mentStatus, AttachmentCount, GetAttachmentHandle, AttachChild, DetachChild

8.51.3.283 ATTACHMENTHANDLE VESSEL::GetAttachmentHandle (bool ftoparent, DWORD i)
const

Return the handle of an attachment point identified by its list index.

Parameters:

toparent 1If true, return a handle for an attachment point to a parent. Otherwise, return a handle for an
attachment point to a child.

i attachment index (>=0)

Returns:

Attachment handle, or NULL if index out of range.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttach-
mentStatus, AttachmentCount, GetAttachmentIndex, AttachChild, DetachChild

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 465

8.51.3.284 bool VESSEL::AttachChild (OBJHANDLE child, ATTACHMENTHANDLE attach-
ment, ATTACHMENTHANDLE child_attachment) const

Attach a child vessel to an attachment point.

Parameters:

child handle of child vessel to be attached.
attachment attachment point to which the child will be attached.

child_attachment attachment point on the child to which we want to attach.

Returns:

true indicates success, false indicates failure (child refuses attachment)

Note:

The attachment handle must refer to an attachment "to child" (i.e. created with toparent=false); the
child_attachment handle must refer to an attachment "to parent” on the child object (i.e. created with
toparent=true). It is not possible to connect two parent or two child attachment points.

A child can only be connected to a single parent at any one time. If the child is already connected to a
parent, the previous parent connection is severed.

The child may check the parent attachment’s id string and, depending on the value, refuse to connect.
In that case, the function returns false.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttach-
mentStatus, AttachmentCount, GetAttachmentIndex, GetAttachmentHandle, DetachChild

8.51.3.285 bool VESSEL::DetachChild (ATTACHMENTHANDLE attachment, double vel = 0 . 0)
const

Break an existing attachment to a child.

Parameters:

attachment attachment handle

vel separation velocity [m/s]

Returns:

true when detachment is successful, false if no child was attached, or if child refuses to detach.

See also:

CreateAttachment, SetAttachmentParams, GetAttachmentParams, GetAttachmentld, GetAttach-
mentStatus, AttachmentCount, GetAttachmentIndex, GetAttachmentHandle, AttachChild

8.51.3.286 UINT VESSEL::AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale,
SURFHANDLE fex = 0) const

Add an exhaust render definition for a thruster.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 466

Parameters:

th thruster handle
Iscale exhaust flame length [m]
wscale exhaust flame width [m]

tex texture handle for custom exhaust flames

Returns:

Exhaust identifier

Note:

Thrusters defined with CreateThruster do not by default render exhaust effects, until an exhaust defi-
nition has been specified with AddExhaust.

The size of the exhaust flame is automatically scaled by the thrust level.

This version retrieves exhaust reference position and direction directly from the thruster setting, and
will therefore automatically reflect any changes caused by SetThrusterRef and SetThrusterDir.

To use a custom exhaust texture, set fex to a surface handle returned by oapiRegisterExhaustTexture.
If tex == 0, the default texture is used.

See also:
AddExhaust(THRUSTER_HANDLE,double,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,const VECTOR3&,const VEC-

TOR3&,SURFHANDLE)const, DelExhaust,CreateThruster,SetThrusterRef,SetThrusterDir,SetThrusterLevel,
oapiRegisterExhaustTexture

8.51.3.287 UINT VESSEL::AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale,
double lofs, SURFHANDLE fex = 0) const

Add an exhaust render definition for a thruster with additional offset.

Parameters:

th thruster handle

Iscale exhaust flame length [m]

wscale exhaust flame width [m]

lofs longitudinal offset [m]

tex texture handle for custom exhaust flames
Returns:

Exhaust identifier

Note:

This method allows to add an additional longitudinal offset between thruster position and exhaust.

See also:
AddExhaust(THRUSTER_HANDLE,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,const VECTOR3&,const VEC-

TOR3&,SURFHANDLE)const, DelExhaust,CreateThruster,SetThrusterRef,SetThrusterDir,SetThrusterLevel,
oapiRegisterExhaustTexture

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 467

8.51.3.288 UINT VESSEL::AddExhaust (THRUSTER_HANDLE ¢h, double Iscale, double wscale,
const VECTOR3 & pos, const VECTOR3 & dir, SURFHANDLE fex = 0) const

Add an exhaust render definition for a thruster with explicit reference position and direction.

Parameters:

th thruster handle

Iscale exhaust flame length [m]

wscale exhaust flame width [m]

pos reference position in vessel coordinates [m]
dir exhaust direction in vessel coordinates

tex texture handle for custom exhaust flames

Note:

This version uses the explicitly provided reference position and direction, rather than using the thruster
parameters.

This allows multiple exhaust render definitions to refer to a single thruster definition, e.g. where
multiple thrusters have been combined into a single "logical" thruster definition. This technique can
be used to simplify the description of thruster groups which are always addressed synchronously.

The exhaust direction should be opposite to the thrust direction of the thruster it refers to.

Exhaust positions and directions are fixed in this version, so they will not react to changes caused by
SetThrusterRef and SetThrusterDir.

To use a custom exhaust texture, set fex to a surface handle returned by oapiRegisterExhaustTexture.
If tex == 0, the default texture is used.

See also:

AddExhaust(THRUSTER_HANDLE,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,double, SURFHANDLE)const, DelEx-
haust,CreateThruster,SetThrusterRef,SetThrusterDir,SetThrusterLevel, oapiRegisterExhaustTexture

8.51.3.289 UINT VESSEL::AddExhaust (EXHAUSTSPEC = spec)

Add an exhaust render definition defined by a parameter structure.

Parameters:

spec exhaust specification

Returns:

Exhaust identifier

Note:

This method is more versatile than the other AddExhaust versions. It allows dynamic custom control
of exhaust level, position and direction, and it can be defined independently of thrusters.

To let the exhaust appearance be automatically controlled by a thruster, set spec->th to the thruster
handle. The fields spec->level, spec->Ipos and spec->1dir can then be set to NULL, to indicate that
they should be linked to the thruster parameters.

If spec->th == NULL (thruster-independent exhaust definition), then spec->level, spec->lpos and
spec->1dir must not be NULL. They must point to variables that continuously define the level, position

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 468

and negative direction of the exhaust cone. The variables themselves must persist during the lifetime
of the exhaust definition.

An exeption is the definition of a constant parameter. For example, if the exhaust position is to be
set to a fixed position, set the spec->flags field to EXHAUST_CONSTANTPOS. In this case, the
value pointed to by spec->Ipos is copied by Orbiter, and the variable can be discarded after the call
to AddExhaust. In a similar fashion, the bit flags EXHAUST_CONSTANTDIR and EXHAUST_-
CONSTANTLEVEL can be added to indicate fixed direction and exhaust level, respectively.

If the spec->Idir parameter is provided, it must specify the engine thrust direction (= the negative
exhaust direction), in contrast to the other AddExhaust functions, which refer to the positive exhaust
direction.

spec->l1size and spec->wsize define the length and width of the exhaust flame [m].

spec->lofs defines a longitudinal offset between the reference position and the exhaust flame.
spec->modulate defines the amplitude of a random variation in exhaust level, between O (none) and 1
(max).

spec->tex can be used to provide a custom exhaust texture. If spec->tex == NULL, then the default
exhaust texture is used.

8.51.3.290 bool VESSEL::DelExhaust (UINT idx) const

Removes an exhaust render definition.

Parameters:

idx exhaust identifier

Returns:

false if exhaust definition does not exist, true otherwise.

See also:

AddExhaust, GetExhaustCount

8.51.3.291 DWORD VESSEL::GetExhaustCount () const

Returns the number of exhaust render definitions for the vessel.

Returns:

Number of exhaust render definitions

See also:

AddExhaust, DelExhaust

8.51.3.292 bool VESSEL::GetExhaustSpec (UINT idx, double * Iscale, double x wscale, VECTOR3
* pos, VECTORS3 * dir, SURFHANDLE = fex) const

Returns the parameters of an exhaust definition.

Parameters:

«— idx exhaust identifier

— Iscale exhaust flame length [m]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference

469

— wscale exhaust flame width [m]
— pos reference position [m]
— dir exhaust direction

— tex texture handle for custom exhaust flames, if any

Returns:

false if idx out of range, true otherwise.

See also:

AddExhaust

8.51.3.293 bool VESSEL::GetExhaustSpec (UINT idx, EXHAUSTSPEC x spec)

Returns the parameters of an exhaust definition in a structure.

Parameters:

«— idx exhaust identifier

— spec pointer to EXHAUSTSPEC structure

Returns:

false if idx is out of range, true otherwise.

Note:

On return the parameters of the specified exhaust object are copied into the structure pointed to by

spec.

8.51.3.294 double VESSEL::GetExhaustLevel (UINT idx) const

Returns the current level of an exhaust source.

Parameters:

idx exhaust identifier

Returns:

Exhaust level (0..1)

Note:

The exhaust level is equivalent to the thrust level of the thruster to which the exhaust definition is

attached.

See also:

AddExhaust, GetThrusterLevel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 470

8.51.3.295 void VESSEL::SetReentryTexture (SURFHANDLE fex, double plimit = 6e7, double
Iscale = 1.0, double wscale = 1. 0) const

Select a previously registered texture to be used for rendering reentry flames.

Parameters:
tex texture handle
plimit friction power limit
Iscale texture length scaling factor

wscale texture width scaling factor

Note:

The texture handle is obtained by a previous call to oapiRegisterReentryTexture.
If a custom texture is not explicitly set, Orbiter uses a default texture (reentry.dds) for rendering reentry
flames. To suppress reentry flames altogether for a vessel, call SetReentryTexture(NULL).

See also:

oapiRegisterReentryTexture

8.51.3.296 PSTREAM_HANDLE VESSEL::AddParticleStream (PARTICLESTREAMSPEC x
pss, const VECTORS3 & pos, const VECTOR3 & dir, double * Ivl) const

Adds a custom particle stream to a vessel.

Parameters:
pss pointer to particle stream definition structure
pos particle source position in vessel coordinates [m]
dir particle emission direction in vessel coordinates

Ivl pointer to scaling factor

Returns:

Particle stream handle

Note:

This function can be used to add venting effects and similar. For engine-specific effects such as exhaust
and contrails, use the AddExhaustStream functions instead.

The PARTICLESTREAMSPEC structure defined the properties of the particle stream.

The position and direction variables are in vessel-relative coordinates. They cannot be redefined.

Ivl points to a variable which defines the strength of the particle emission. Its value should be set in the
range from O (particle generation off) to 1 (emission at full strength). It can be changed continuously
to modulate the particle generation.

See also:

AddExhaustStream, AddReentryStream

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 471

8.51.3.297 PSTREAM_HANDLE VESSEL::AddExhaustStream (THRUSTER_HANDLE ¢h,
PARTICLESTREAMSPEC x* pss = 0) const

Adds an exhaust particle stream to a vessel.

Parameters:

th thruster handle

pss particle stream specification

Returns:

Particle stream handle

Note:

Exhaust streams can be emissive (to simulate "glowing" ionised gases) or diffuse (e.g. for simulating
vapour trails).

The PARTICLESTREAMSPEC structure defined the properties of the particle stream.

Multiple streams can be defined for a single engine. For example, an emissive stream with short
lifetime may represent the ionised exhaust gases, while a diffuse stream with longer lifetime represents
the vapour trail.

To improve performance, closely packed engines may share a single exhaust stream.

If the user has disabled particle streams in the launchpad dialog, this function will return NULL. The
module must be able to cope with this case.

See also:

AddExhaustStream(THRUSTER_HANDLE,const VECTOR3&,PARTICLESTREAMSPEC:)const,
AddParticleStream, AddReentryStream

8.51.3.298 PSTREAM_HANDLE VESSEL::AddExhaustStream (THRUSTER_HANDLE th,
const VECTOR3 & pos, PARTICLESTREAMSPEC x pss = 0) const

Adds an exhaust particle stream to a vessel.

Parameters:

th thruster handle
pos particle emission reference point

pss particle stream specification

Returns:

Particle stream handle

Note:

This version allows to pass an explicit particle emission reference position, independent of the engine
reference point.

If the user has disabled particle streams in the launchpad dialog, this function will return NULL. The
module must be able to cope with this case.

See also:

AddExhaustStream(THRUSTER_HANDLE,PARTICLESTREAMSPECx)const, AddParticleStream,
AddReentryStream

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 472

8.51.3.299 PSTREAM_HANDLE VESSEL::AddReentryStream (PARTICLESTREAMSPEC x
pss) const

Adds a reentry particle stream to a vessel.

Parameters:

pss particle stream specification

Returns:
Particle stream handle
Note:

Vessels automatically define a default emissive particle stream, but you may want to add further stream
to customise the appearance.

See also:

AddParticleStream, AddExhaustStream

8.51.3.300 bool VESSEL::DelExhaustStream (PSTREAM_HANDLE ch) const

Delete an existing particle stream.

Parameters:

ch particle stream handle

Returns:

false indicates failure (particle stream not found)

Note:

If a thruster is deleted (with ref DelThruster), any attached particle streams are deleted automatically.
A deleted particle stream will no longer emit particles, but existing particles persist until they expire.

See also:

AddParticleStream, AddExhaustStream, AddReentryStream

8.51.3.301 void VESSEL::SetNosewheelSteering (bool activate) const

Parameters:

activate true to activate, false to deactivate

Note:

With nose-wheel steering active, the yaw controls will apply a lateral force on the front touchdown-
point when in ground contact.
By default, nose-wheel steering is inactive. This function should only be called for appropriate vessel

types.

See also:

GetNosewheelSteering

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference

473

8.51.3.302 bool VESSEL::GetNosewheelSteering () const

Returns the activation state of the nose-wheel steering system.

Returns:

true indicates nose-wheel steering is active, false indicates disabled.

See also:

SetNosewheelSteering

8.51.3.303 void VESSEL::SetMaxWheelbrakeForce (double f) const

Define the maximum force which can be provided by the vessel’s wheel brake system.

Parameters:

f maximum force [N]

See also:

SetWheelbrakeLevel, GetWheelbrakeLevel

8.51.3.304 void VESSEL::SetWheelbrakeLevel (double level, int which = 0, bool permanent =

true) const

Apply the wheel brake.

Parameters:

level wheelbrake level [0..1]
which 0 =both, 1 = left, 2 = right main gear

permanent true sets the level permanently, false only applies to current time step

See also:

SetMaxWheelbrakeForce, GetWheelbrakeLevel

8.51.3.305 double VESSEL::GetWheelbrakeLevel (int which) const

Returns the current wheel brake level.

Parameters:

which 0 = average of both main gear levels, 1 = left, 2 = right

Returns:

wheel brake level [0..1]

See also:

SetMaxWheelbrakeForce, SetWheelbrakeLevel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 474

8.51.3.306 void VESSEL::AddBeacon (BEACONLIGHTSPEC = bs)

Add a light beacon definition to a vessel.

Parameters:

bs structure defining the beacon parameters

Note:

The BEACONLIGHTSPEC variable passed to AddBeacon (as well as the pos and col vectors pointed
to by the structure) must remain valid until the beacon is removed (with DelBeacon, ClearBeacons,
or by deleting the vessel). It should therefore either be defined static, or as a member of the derived
vessel class.

The BEACONLIGHTSPEC parameters can be modified at any time by the module after the call to
AddBeacon, to modify the beacon appearance. The changes take effect immediately.

To turn the beacon off temporarily, don’t delete the beacon but simply set the active element to false.
shape defines the appearance of the beacon. Currently supported are:

* BEACONSHAPE_COMPACT (a compact blob)
« BEACONSHAPE_DIFFUSE (a more diffuse blob)
* BEACONSHAPE_STAR (a starlike appearance)

falloff detemines how the render size of the beacon changes with distance. The value should be
between 0 and 1, where 0 means that the apparent size of the beacon is proportional to 1/distance,
and 1 means that the apparent size doesn’t change at all with distance. The higher the value, the
further away the beacon will remain visible. (but note that visibility is limited to the range defined by
SetVisibilityLimit).

period, duration and fofs are used to define a periodically blinking beacon (strobe). To define a con-
tinuous beacon, set period = 0. The two other parameters are then ignored.

See also:

DelBeacon, ClearBeacons, SetVisibilityLimit

8.51.3.307 bool VESSEL::DelBeacon (BEACONLIGHTSPEC x bs)

Remove a beacon definition from the vessel.

Parameters:

bs pointer to the BEACONLIGHTSPEC structure previously use to define the beacon with AddBea-
con.

Returns:

true if the beacon definition was found and removed, false otherwise.

Note:

DelBeacon removes the beacon reference from the vessel’s list of beacons, but does not deallocate the
beacon itself. If the vessel had defined the beacon specification dynamically, it should deallocate it
after this call.

See also:

AddBeacon, ClearBeacons

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 475

8.51.3.308 void VESSEL::ClearBeacons ()

Remove all beacon definitions from the vessel.

See also:

AddBeacon, DelBeacon

8.51.3.309 const BEACONLIGHTSPEC:* VESSEL::GetBeacon (DWORD idx) const

Returns a pointer to one of the vessel’s beacon specifications.

Parameters:

idx beacon list index (>=0)

Returns:

Pointer to specification for vessel beacon at list index idx, or NULL if idx is out of range.

Note:

The list index for a given beacon can change when the vessel adds or deletes beacons.

8.51.3.310 LightEmitter+ VESSEL::AddPointLight (const VECTOR3 & pos, double range, double
att0, double att1, double att2, COLOURA4 diffuse, COLOURAE specular, COLOUR4 ambient) const

\ name Light emitters

Add an isotropic point light source to the vessel.

Parameters:

pos source position [m] in vessel coordinates

range light source range [m]

att attenuation coefficients (see notes)

att]l attenuation coefficients (see notes)

att2 attenuation coefficients (see notes)

diffuse source contribution to diffuse object colours
specular source contribution to specular object colours

ambient source contribution to ambient object colours

Returns:

pointer to new emitter object

Note:
The intensity / of the light source as a function of distance d is defined via the coefficients by

1
I =
attg + datt; + d2atts

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 476

8.51.3.311 LightEmitter+x VESSEL::AddSpotLight (const VECTOR3 & pos, const VECTOR3 &
dir, double range, double att(), double att1, double att2, double umbra, double penumbra, COLOUR4
diffuse, COLOURA4 specular, COLOUR4 ambient) const

Add a directed spot light source to the vessel.

Parameters:

pos source position [m] in vessel coordinates

dir light direction in vessel coordinates

range light source range [m]

att attenuation coefficients (see notes)

artl attenuation coefficients (see notes)

att2 attenuation coefficients (see notes)

umbra aperture of inner (maximum intensity) cone [rad]
penumbra aperture of outer (zero intensity) cone [rad]
diffuse source contribution to diffuse object colours
specular source contribution to specular object colours
ambient source contribution to ambient object colours

Returns:
pointer to new emitter object
Note:

The intensity I of the light source as a function of distance d is defined via the coefficients by
[1
~ atty + datt; + d2atts

8.51.3.312 DWORD VESSEL::LightEmitterCount () const

Returns the number of light sources defined for the vessel.

Returns:

Number of light sources.

8.51.3.313 const LightEmitter+ VESSEL::GetLightEmitter (DWORD i) const

Returns a pointer to a light source object identified by index.
Parameters:
i emitter index (>=0)
Returns:
Pointer to light source object, or NULL if index out of range
Note:
The index of a given source object can change if other objects in the list are deleted.

See also:

LightEmitterCount

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 477

8.51.3.314 bool VESSEL::DelLightEmitter (LightEmitter * le) const

Deletes the specified light source from the vessel.

Parameters:

le pointer to light emitter object

Returns:

true if the emitter was successfully deleted, false if the source was not recognised by the vessel.

Note:

If the method returns true, the emitter (le) was deallocated and the pointer should no longer be used.

See also:

ClearLightEmitters, LightEmitterCount

8.51.3.315 void VESSEL.::ClearLightEmitters () const

Remove all light sources defined for the vessel.

See also:

AddPointLight, AddSpotLight, LightEmitterCount

8.51.3.316 void VESSEL::ParseScenarioLineEx (char * line, void * status) const

Pass a line read from a scenario file to Orbiter for default processing.

Parameters:

line line to be interpreted

status status parameters (points to a VESSELSTATUSKX variable).

Note:

This function should be used within the body of VESSEL2::clbkLoadStateEx.

The parser clbkLoadStateEx should forward all lines not recognised by the module to Orbiter via
ParseScenarioLineEx to allow processing of standard vessel settings.

clbkLoadStateEx currently provides a VESSELSTATUS?2 status definition. This may change in future
versions, so status should not be used within clbkLoadStateEx other than passing it to ParseScenario-
LineEx.

See also:

VESSEL2::clbkLoadStateEx

8.51.3.317 void VESSEL::SetEngineLevel (ENGINETYPE eng, double level) const

Set the thrust level for an engine group.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 478

Deprecated

This method has been replaced by VESSEL.::SetThrusterGroupLevel.

Parameters:
eng engine group identifier
level thrust level [0..1]

See also:

SetThrusterGroupLevel, IncEngineLevel

8.51.3.318 void VESSEL::IncEngineLevel (ENGINETYPE eng, double dlevel) const

Increase or decrease the thrust level for an engine group.

Deprecated

This method has been replaced by VESSEL::IncThrusterGroupLevel.

Parameters:
eng engine group identifier
dlevel thrust increment
Note:
Use negative dlevel to decrease the engine’s thrust level.
Levels are clipped to valid range.
See also:

IncThrusterGroupLevel, SetEngineLevel

8.51.3.319 void VESSEL::SetExhaustScales (EXHAUSTTYPE exh, WORD id, double Iscale, dou-
ble wscale) const

Deprecated

This method no longer performs any action. It has been replaced by the VESSEL::AddExhaust meth-
ods.
See also:

AddExhaust(THRUSTER_HANDLE,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,const VECTOR3&,const VEC-
TOR3&,SURFHANDLE)const

8.51.3.320 bool VESSEL::DelThrusterGroup (THGROUP_HANDLE & thg, THGROUP_TYPE
thgt, bool delth = false) const

Delete a thruster group and (optionally) all associated thrusters.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 479

Deprecated
This method has been replaced by VESSEL.::DelThrusterGroup(THGROUP_HANDLE,bool)const.

Parameters:

thg thruster group handle (NULL on return)
thgt thruster group type (see Thruster and thruster-group parameters)

delth thruster destruction flag (see notes)

Returns:

frue on success.

Note:

If delth==true, all thrusters associated with the group will be destroyed. Note that this can have side
effects if the thrusters were associated with multiple groups, since they are removed from all those
groups as well.

See also:

DelThrusterGroup(THGROUP_TYPE,bool)const, CreateThrusterGroup, DelThruster, Thruster and
thruster-group parameters

8.51.3.321 double VESSEL::GetBankMomentScale () const

Returns the scaling factor for the yaw moment.

Deprecated
This method has been replaced by VESSEL::GetYawMomentScale.

Returns:

yaw moment scale factor

Note:

The method is misnamed. It refers to the vessel’s yaw moment.

See also:

GetYawMomentScale

8.51.3.322 void VESSEL::SetBankMomentScale (double scale) const

Sets the scaling factor for the yaw moment.

Deprecated

This method has been replaced by VESSEL::SetYawMomentScale.

Parameters:

scale scale factor for slip angle moment.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 480

Note:

The method is misnamed. It refers to the vessel’s yaw moment.

See also:

SetYawMomentScale

8.51.3.323 bool VESSEL::SetNavRecv (DWORD n, DWORD ch) const

Sets the channel of a NAV radio receiver.

Deprecated
This method has been replaced by VESSEL.::SetNavChannel

Parameters:

n receiver index (>=0)

ch channel (>=0)

Returns:

false on error (index out of range), true otherwise

8.51.3.324 DWORD VESSEL::GetNavRecv (DWORD n) const

Returns the current channel setting of a NAV radio receiver.

Deprecated
This method has been replaced by VESSEL::GetNavChannel

Parameters:

n receiver index (>=0)

Returns:

Receiver channel [0..639]. If index n is out of range, the return value is 0.

8.51.3.325 void VESSEL::SetCOG_elev (double /) const

Set the altitude of the vessel’s centre of gravity over ground level when landed.

Parameters:

h elevation of the vessel’s centre of gravity above the surface plane when landed [m].

Deprecated

This method is obsolete and should no longer be used. It has been replaced by VES-
SEL::SetTouchdownPoints.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.51 VESSEL Class Reference 481

8.51.3.326 void VESSEL::ClearMeshes () const
Remove all mesh definitions for the vessel.
Deprecated
This version is obsolete and has been replaced by VESSEL::ClearMeshes(bool)const .

Note:

Equivalent to ClearMeshes(true). This method is only retained for backward compatibility, and may
be removed in future versions.

See also:

ClearMeshes(bool)const

8.51.3.327 void VESSEL::SetMeshVisibleInternal (UINT idx, bool visible) const

Marks a mesh as visible from internal cockpit view.

Parameters:
idx mesh index (>=0)
visible visibility flag
Deprecated
This method is obsolete and has been replaced by VESSEL::SetMeshVisibilityMode.

Note:

By default, a vessel is not rendered when the camera is in internal (cockpit) view. This function can be
used to force rendering of some or all of the vessel’s meshes.

See also:

SetMeshVisibilityMode

8.51.3.328 void VESSEL::SaveDefaultState (FILEHANDLE scn) const

Causes Orbiter to write default vessel parameters to a scenario file.

Deprecated

Use a call to the base class VESSEL2::clbkSaveState from within the overloaded callback function
instead.

Parameters:

scn scenario file handle

Note:

This method saves the vessel’s default state parameters (such as position, velocity, orientation, etc.) to
a scenario file.

This functionality is now included in the default implementation of VESSEL2::clbkSaveState. There-
fore, vessel classes which overload this method to save custom vessel parameters should call the base
class method to allow Orbiter to save the default vessel parameters.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 482

See also:

VESSEL2::clbkSaveState

8.51.3.329 void VESSEL::ParseScenarioLine (char x line, VESSELSTATUS x status) const

Pass a line read from a scenario file to Orbiter for default processing.

Deprecated

This function is retained for backward compatibility only. New modules should overload the VES-
SEL2::clbkLoadStateEx function and use VESSEL.::ParseScenarioLineEx for default state parsing.

Parameters:

line line to be interpreted

Status state parameter set

See also:

ParseScenarioLineEx, VESSELSTATUS

8.51.3.330 static OBJHANDLE VESSEL::Create (const char x name, const char * classname, const
VESSELSTATUS & status) [static]

Vessel creation.

Deprecated

This method has been replaced with oapiCreateVessel and oapiCreate VesselEx.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/Vessel APL.h

8.52 VESSEL?2 Class Reference

#include <VesselAPI.h>
Inheritance diagram for VESSEL?2:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 483

Collaboration diagram for VESSEL2:

8.52.1 Detailed Description

Callback extensions to the VESSEL class.

The VESSEL2 class adds a variety of callback functions to the VESSEL interface (clbkx). These are called
by Orbiter to notify the vessel about different types of events and allow it to react to them. The VESSEL2
class implements these as virtual functions which act as placeholders to be overwritten by derived classes
whenever a non-default behaviour is required.

Examples:

clbkLoadStateEx.cpp, clbkPreStep.cpp, clbkSetStateEx.cpp, and VESSEL2.cpp.

Public Member Functions

e VESSEL2 (OBJHANDLE hVessel, int fmodel=1)
Creates a VESSEL? interface for a vessel object.

* virtual void clbkSetClassCaps (FILEHANDLE cfg)

Initialisation of vessel capabilities.

e virtual void clbkSaveState (FILEHANDLE scn)

Called when the vessel needs to save its current status to a scenario file.

e virtual void clbkLoadStateEx (FILEHANDLE scn, void x*status)

Called when the vessel needs to load its initial state from a scenario file.

« virtual void clbkSetStateEx (const void x*status)

Set state parameters during vessel creation.

e virtual void clbkPostCreation ()

Called after a vessel has been created and its state has been set.

* virtual void clbkFocusChanged (bool getfocus, OBJHANDLE hNewVessel, OBJHANDLE hOld-
Vessel)

Called after a vessel gained or lost input focus.

* virtual void clbkPreStep (double simt, double simdt, double mjd)

Time step notification before state update.

* virtual void clbkPostStep (double simt, double simdt, double mjd)

Time step notification after state update.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52

VESSEL?2 Class Reference

484

virtual bool clbkPlaybackEvent (double simt, double event_t, const char xevent_type, const char

*event)

Playback event notification.

virtual void clbkVisualCreated (VISHANDLE vis, int refcount)

Called after a vessel visual has been created by the renderer.

virtual void clbkVisualDestroyed (VISHANDLE vis, int refcount)

Called before a vessel visual is destroyed.

virtual void clbkDrawHUD (int mode, const HUDPAINTSPEC xhps, HDC hDC)

HUD redraw notification.

virtual void clbkRCSMode (int mode)

Reaction Control System mode change notification.

virtual void clbkADCtrIMode (DWORD mode)

Aerodynamic control surface mode change notification.

virtual void clbkHUDMode (int mode)
HUD mode change notification.

virtual void clbkMFDMode (int mfd, int mode)
MFD mode change modification.

virtual void clbkNavMode (int mode, bool active)

Navigation mode change notification.

virtual void clbkDockEvent (int dock, OBJHANDLE mate)

Docking event notification.

virtual void clbkAnimate (double simt)

Manual animation notification.

virtual int clbkConsumeDirectKey (char skstate)

Keyboard status notification.

virtual int clbkConsumeBufferedKey (DWORD key, bool down, char sx«kstate)

Keyboard event notification.

virtual bool clbkLoadGenericCockpit ()

Generic cockpit view mode request notification.

virtual bool clbkLoadPanel (int id)

2-D instrument panel view mode request notification

virtual bool clbkPanelMouseEvent (int id, int event, int mx, int my)

Mouse event notification for 2-D panel views.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 485

« virtual bool clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf)

Redraw event notification for 2-D panel views.

e virtual bool clbkLoadVC (int id)

3-D virtual cockpit view mode request notification

* virtual bool clbkVCMouseEvent (int id, int event, VECTOR3 &p)

Mouse event notification for 3-D virtual cockpit views.

e virtual bool clbkVCRedrawEvent (int id, int event, SURFHANDLE surf)

Redraw event notification for 3-D virtual cockpit views.

8.52.2 Constructor & Destructor Documentation

8.52.2.1 VESSEL2::VESSEL2 (OBJHANDLE hVessel, int fmodel = 1)
Creates a VESSEL?2 interface for a vessel object.

An instance of a vessel class derived from VESSEL?2 is typically called during the initialisation of a vessel
module (during ovclnit) to create an interface to the vessel instance controlled by the module. However, a
VESSEL?2 instance for any existing vessel can be created by any module.

Parameters:

hVessel vessel object handle

Jmodel requested level of realism (O=simple, 1=realistic)

Note:

This function creates an interface to an existing vessel. It does not create a new vessel. New vessels
are created with the oapiCreateVessel and oapiCreateVesselEx functions.
The VESSEL?2 interface instance created in ovclnit should be deleted in ovcEXxit.

See also:

oapiCreateVessel, oapiCreate VesselEx, ovclnit

8.52.3 Member Function Documentation

8.52.3.1 virtual void VESSEL2::clbkSetClassCaps (FILEHANDLE c¢fg) [virtual]
Initialisation of vessel capabilities.

Called after vessel creation, this function allows to set vessel class capabilities and parameters. This can
include definition of physical properties (size, mass, docking ports, etc.), creation of propellant resources
and engines, aerodynamic parameters, including airfoil definitions, lift and drag properties, or active control
surfaces.

Parameters:

¢fg handle for the vessel class configuration file

Default action:

None.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 486

Note:

This function is called after the vessel has been created, but before its state is read from the scenario
file. This means that its state (position, velocity, fuel level, etc.) is undefined at this point.

Use this function to set vessel class capabilities, not vessel state parameters.

Orbiter will scan the vessel class configuration file for generic parameters (like mass or size) after
clbkSetClassCaps returns. This allows to override generic caps defined in the module by editing the
configuration file.

The configuration file handle is also passed to clbkSetClassCaps, to allow reading of vessel class-
specific parameters from file.

8.52.3.2 virtual void VESSEL2::clbkSaveState (FILEHANDLE scn) [virtual]

Called when the vessel needs to save its current status to a scenario file.

Parameters:

scn scenario file handle

Default action:

Saves the generic vessel state parameters.

Note:

clbkSaveState is called by Orbiter at the end of a simulation session while creating the save scenario
for the current simulation state.

This function only needs to be overloaded if the vessel must save nonstandard parameters.

If clbkSaveState is overloaded, generic state parameters will only be written if the base class VES-
SEL2::clbkSaveState is called.

To write custom parameters to the scenario file, use the oapiWriteLine function.

8.52.3.3 void VESSEL2::clbkLoadStateEx (FILEHANDLE scn, void * status) [virtual]

Called when the vessel needs to load its initial state from a scenario file.

Parameters:

scn scenario file handle
status pointer to VESSELSTATUSKX structure (x >=2)

Default action:

Loads the generic vessel state parameters.

Note:

This callback function allows to read custom vessel status parameters from a scenario file.

The function should define a loop which parses lines from the scenario file via oapiReadScenario_-
nextline.

You should not call the base class clbkLLoadStateEx to parse generic parameters, because this will skip
over any custom scenario entries. Instead, any lines which the module parser does not recognise should
be forwarded to Orbiter’s default scenario parser via VESSEL::ParseScenarioLineEx.

See also:

VESSELSTATUS?2, ParseScenarioLineEx, oapiReadScenario_nextline

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 487

Examples:

clbkLoadStateEx.cpp.

8.52.3.4 void VESSEL2::clbkSetStateEx (const void * status) [virtual]

Set state parameters during vessel creation.

Parameters:

status pointer to a VESSELSTATUSKX structure

Default action:

Invokes Orbiter’s default state initialisation.

Calling sequence:

This function is called when the vessel is being created with oapiCreateVesselEx, after its clbkSet-
ClassCaps has been invoked and before its clbkPostCreation method is invoked. Vessels that are cre-
ated during simulation start as a result of parsing the scenario file invoke clbkLoadStateEx instead.

Note:

This callback function receives the VESSELSTATUSKx structure passed to oapiCreate VesselEx. It must
therefore be able to process the interface version used by those functions.

This function remains valid even if future versions of Orbiter introduce new VESSELSTATUSKX inter-
faces.

If an overloaded method does not call VESSEL2::clbkSetStateEx, no default state initialisation is
performed. Default state initialisation can also be done by calling VESSEL::DefSetStateEx.

Examples:

clbkSetStateEx.cpp.

8.52.3.5 virtual void VESSEL2::clbkPostCreation () [virtual]

Called after a vessel has been created and its state has been set.

Default action:

None.

Calling sequence:

This function is called during vessel creation after clbkSetStateEx or clbkLoadStateEx have been
called and before the vessel enters the update loop, i.e. before its clbkPreStep is invoked for the
first time. Vessels that are created at the start of the simulation (i.e. are listed in the scenario) call their
clbkPostCreation after all scenario vessels have been created.

Note:

This function can be used to perform the final setup steps for the vessel, such as animation states and
instrument panel states. When this function is called, the vessel state (e.g. position, thruster levels,
etc.) have been defined.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 488

8.52.3.6 virtual void VESSEL2::clbkFocusChanged (bool getfocus, OBJHANDLE hNew Vessel, OB-
JHANDLE hOldVessel) [virtual]

Called after a vessel gained or lost input focus.

Parameters:

getfocus true if the vessel gained focus, false if it lost focus
hNewVessel handle of vessel gaining focus
hOldVessel handle of vessel losing focus

Default action:

None.

Note:

Whenever the input focus is switched to a new vessel (e.g. via user selection F3), this method is called
for both the vessel losing focus (getfocus=false) and the vessel gaining focus (getfocus=true).

In both calls, hNewVessel and hOldVessel are the vessel handles for the vessel gaining and the vessel
losing focus, respectively.

This method is also called at the beginning of the simulation for the initial focus object. In this case
hOldVessel is NULL.

8.52.3.7 void VESSEL2::clbkPreStep (double simt, double simdt, double mjd) [virtual]
Time step notification before state update.

Called at each simulation time step before the state is updated to the current simulation time. This function
allows to define actions which need to be controlled continuously.

Parameters:

simt next simulation run time [s]
simdt step length over which the current state will be integrated [s]

mjd next absolute simulation time (days) in Modified Julian Date format

Default action:

None

Note:

This function is called at each frame of the simulation, after the integration step length has been
determined, but before the time integration is applied to the current simulation state.

This method is useful when the step length Dt is required in advance of the time integration, for
example to apply a force that produces a given Dv, since the AddForce request will be applied in the
next update. Using clbkPostStep for this purpose would be wrong, because its Dt parameter refers to
the previous step length.

See also:

clbkPostStep

Examples:

clbkPreStep.cpp.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 489

8.52.3.8 virtual void VESSEL2::clbkPostStep (double simt, double simdt, double mjd)
[virtual]

Time step notification after state update.

Called at each simulation time step after the state has been updated to the current simulation time. This
function allows to define actions which need to be controlled continuously.

Parameters:

simt current simulation run time [s]
simdt last time step length [s]

mjd absolute simulation time (days) in Modified Julian Date format.

Default action:

None.

Note:
This function, if implemented, is called at each frame for each instance of this vessel class, and is
therefore time-critical. Avoid any unnecessary calculations here which may degrade performance.

See also:

clbkPreStep

8.52.3.9 virtual bool VESSEL2::clbkPlaybackEvent (double simt, double event_t, const char x
event_type, const char x event) [virtual]

Playback event notification.

Called during playback of a recording session when a custom event tag in the vessel’s articulation stream
is encountered.

Parameters:

simt current simulation time [s]
event_t recorded event time [s]
event_type event tag string

event event data string

Returns:

Should return true if the event type is recognised and processed, false otherwise.

Default action:

Do nothing, return false.

Note:

This function can be used to process any custom vessel events that have been recorded with VES-
SEL::RecordEvent during a recording session.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 490

8.52.3.10 virtual void VESSEL2::clbkVisualCreated (VISHANDLE vis, int refcount) [virtual]

Called after a vessel visual has been created by the renderer.

Parameters:

vis handle for the newly created visual

refcount visual reference count

Default action:

None.

Note:

The logical interface to a vessel exists as long as the vessel is present in the simulation. However, the
visual interface exists only when the vessel is within visual range of the camera. Orbiter creates and
destroys visuals as required. This enhances simulation performance in the presence of a large number
of objects in the simulation.

Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration (e.g. as defined in the
mesh file). The module can use this function to update the visual to the current state, wherever dynamic
changes are required.

More than one visual representation of an object may exist. The refcount parameter defines how many
visual interfaces to the object exist.

8.52.3.11 virtual void VESSEL2::clbkVisualDestroyed (VISHANDLE vis, int refcount)
[virtual]

Called before a vessel visual is destroyed.

Parameters:

vis handle for the visual to be destroyed

refcount visual reference count

Default action:

None.

Note:

Orbiter calls this function before it destroys a visual representation of the vessel. This may be in
response to the destruction of the actual vessel, but in general simply means that the vessel has moved
out of visual range of the current camera location.

8.52.3.12 virtual void VESSEL2::clbkDrawHUD (int mode, const HUDPAINTSPEC * hps, HDC
hDC) [virtual]

HUD redraw notification.

Called when the vessel’s head-up display (HUD) needs to be redrawn (usually at each time step, unless
the HUD is turned off). Overwriting this function allows to implement vessel-specific modifications of the
HUD display (or to suppress the HUD altogether).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 491

Parameters:

mode HUD mode (see HUD_x* constants in OrbiterAPILh)
hps pointer to a HUDPAINTSPEC structure
hDC GDI drawing device context

Default action:

Draws a standard HUD display with Orbiter’s default display layout.

Deprecated

This method contains a device-dependent drawing context and may not work with all graphics clients.
It has been superseded by VESSEL3::clbkDrawHUD.
Note:

For vessels derived from VESSEL3 orbiter will not call this method, but will call the VES-
SEL3::clbkDrawHUD method instead. The VESSEL3 version uses a generic Skefchpad drawing con-
text instead of a HDC.

See also:

VESSEL3::clbkDrawHUD

8.52.3.13 virtual void VESSEL2::clbkRCSMode (int mode) [virtual]
Reaction Control System mode change notification.

Called when a vessel’s RCS (reaction control system) mode changes. Usually the RCS consists of a set
of small thrusters arranged so as to allow controlled attitude changes. In Orbiter, the RCS can be driven
in either rotational mode (to change the vessel’s angular velocity) or in linear mode (to change its linear
velocity), or be switched off.

Parameters:

mode new RCS mode: O=disabled, 1=rotational, 2=linear

Default action:

None.

Note:

This callback function is invoked when the user switches RCS mode via the keyboard ("/" or "Ctrl-/"
on numerical keypad) or after a call to VESSEL.::SetAttitudeMode or VESSEL::ToggleAttitudeMode.
Not all vessel types may support a reaction control system. In that case, the callback function can be
ignored by the module.

8.52.3.14 virtual void VESSEL2::clbkADCtrIMode (DWORD mode) [virtuall]
Aerodynamic control surface mode change notification.

Called when user input mode for aerodynamic control surfaces (elevator, rudder, aileron) changes.

Parameters:

mode control mode

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 492

Default action:

None.

Note:

The returned control mode contains bit flags as follows:
* bit 0: elevator enabled/disabled
e bit 1: rudder enabled/disabled
* bit 2: ailerons enabled/disabled

Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates fully enabled.

8.52.3.15 virtual void VESSEL2::clbkHUDMode (int mode) [virtual]
HUD mode change notification.

Called after a change of the vessel’s HUD (head-up-display) mode.

Parameters:

mode new HUD mode

Default action:

None.

Note:
For currently supported HUD modes see HUD_x constants in OrbiterAPLh
mode HUD_NONE indicates that the HUD has been turned off.

See also:

Section HUD mode identifiers for a list of default mode identifiers.

8.52.3.16 virtual void VESSEL2::clbkMFDMode (int mfd, int mode) [virtual]

MFD mode change modification.

Called when the user has switched one of the MFD (multi-functional display) instruments to a different
display mode.

Parameters:

mfd MFD instrument identifier
mode new MFD mode identifier

Default action:

None.

Note:

This callback function can be used to refresh the MFD button labels after the MFD mode has changed,
or if a mode requires a dynamic label update.

The mode parameter can be one of the MFD mode identifiers MFD_x listed in OrbiterAPLh, or MFD_-
REFRESHBUTTONS. The latter is sent as a result of a call to oapiRefreshMFDButtons. It indicates
not a mode change, but the need to refresh the button labels within a mode (i.e. a mode that dynamically
changed its labels).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 493

See also:

Section MFD mode identifiers for a list of default mode identifiers.

8.52.3.17 virtual void VESSEL2::clbkNavMode (int mode, bool active) [virtual]
Navigation mode change notification.

Called when an automated "navigation mode" is activated or deactivated for a vessel. Most navigation
modes engage the vessel’s RCS to attain a specific attitude, including pro/retrograde, normal to the orbital
plane, level with the local horizon, etc.

Parameters:

mode navmode identifier

active true if activated, false if deactivated

Default action:

None.

See also:

Section Navigation mode identifiers for a list of available navigation modes.

8.52.3.18 virtual void VESSEL2::clbkDockEvent (int dock, OBJHANDLE mate) [virtuall]
Docking event notification.

Called after a docking or undocking event at one of the vessel’s docking ports.

Parameters:

dock docking port index

mate handle to docked vessel, or NULL for undocking event

Default action:

None.

Note:

dock is the index (>= 0) of the vessel’s docking port at which the docking/undocking event takes place.
mate is a handle to the vessel docking at the port, or NULL to indicate an undocking event.

8.52.3.19 virtual void VESSEL2::clbkAnimate (double simf) [virtual]
Manual animation notification.

Called at each simulation time step if the module has registered at least one animation notification request
and if the vessel’s visual exists.

Parameters:

simt simulation time [s]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 494

Default action:

None.

Note:

This callback allows the module to animate the vessel’s visual representation (moving undercarriage,
cargo bay doors, etc.)

It is only called as long as the vessel has registered an animation request (between matching VES-
SEL::RegisterAnimation and VESSEL::UnregisterAnimation calls) and if the vessel’s visual exists.
This callback is not used for the "semi-automatic" animation mechanism (VESSEL::Create Animation,
VESSEL::AddAnimationComponent)

See also:

VESSEL::RegisterAnimation, VESSEL::UnregisterAnimation, VESSEL::CreateAnimation, VES-
SEL::AddAnimationComponent

8.52.3.20 virtual int VESSEL2::clbkConsumeDirectKey (char x kstate) [virtuall]

Keyboard status notification.

Called at each simulation time step to allow the module to query the current keyboard status. This callback
can be used to install a custom keyboard interface for the vessel.

Parameters:

kstate keyboard state

Returns:

A nonzero return value will completely disable default processing of the key state for the current
time step. To disable the default processing of selected keys only, use the RESETKEY macro (see
OrbiterAPLh) and return 0.

Default action:

None, returns 0.

Note:

The keystate contains the current keyboard state. Use the KEYDOWN macro in combination with the
key identifiers as defined in OrbiterAPL.h (OAPI_KEY_x) to check for particular keys being pressed.
Example:

if (KEYDOWN (kstate, OAPI_KEY_F10)) {

// perform action

RESETKEY (kstate, OAPI_KEY_F10);

// optional: prevent default processing of the key
}

This function should be used where a key state, rather than a key event is required, for example when
engaging thrusters or similar. To test for key events (key pressed, key released) use clbkConsume-
BufferedKey() instead.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 495

8.52.3.21 virtual int VESSEL2::clbkConsumeBufferedKey (DWORD key, bool down, char * kstate)
[virtual]

Keyboard event notification.

This callback function notifies the vessel of a buffered key event (key pressed or key released).

Parameters:

key key scan code (see OAPI_KEY_x constants in OrbiterAPLh)
down true if key was pressed, false if key was released

kstate current keyboard state

Returns:

The function should return 1 if Orbiter’s default processing of the key event should be skipped, 0
otherwise.

Default action:

None, returns 0.

Note:

The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.). The KEYMOD_xxx
macros defined in OrbiterAPLh are useful for this purpose.

This function may be called repeatedly during a single frame, if multiple key events have occurred in
the last time step.

8.52.3.22 virtual bool VESSEL2::clbkLoadGenericCockpit () [virtual]
Generic cockpit view mode request notification.

Called when the vessel’s generic "glass cockpit" view (consisting of two "floating" MFD instruments and
a HUD, displayed on top of the 3-D render window) is selected by the user pressing F8, or by a function
call.

Returns:

The function should return true if it supports generic cockpit view, false otherwise.

Default action:

Sets camera direction to "forward" (0,0,1) and returns true.

Note:

The generic cockpit view is available for all vessel types by default, unless this function is overwritten
to return false.

Only disable the generic view if the vessel supports either 2-D instrument panels (see clbkl.oadPanel)
or a virtual cockpit (see clbkLLoadVC). If no valid cockpit view at all is available for a vessel, Orbiter
will crash.

Even if the vessel supports panels or virtual cockpits, you shouldn’t normally disable the generic view,
because it provides the best performance on slower computers.

See also:

clbkLoadPanel, clbkLoadVC

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 496

8.52.3.23 virtual bool VESSEL2::clbkLoadPanel (intid) [virtuall]
2-D instrument panel view mode request notification

Called when Orbiter tries to switch the cockpit view to a 2-D instrument panel.

Parameters:

id panel identifier (>=0)

Returns:

The function should return true if it supports the requested panel, false otherwise.

Default action:

None, returns false.

Note:

In the body of this function the module should define the panel background bitmap and panel capabil-
ities, e.g. the position of MFDs and other instruments, active areas (mouse hotspots) etc.

A vessel which implements panels must at least support panel id O (the main panel). If any panels
register neighbour panels (see oapiSetPanelNeighbours), all the neighbours must be supported, too.

See also:

oapiRegisterPanelBackground, oapiRegisterPanelArea, oapiRegisterMFD, clbkLoadGenericCockpit,
clbkLoadVC

8.52.3.24 virtual bool VESSEL2::clbkPanelMouseEvent (int id, int event, int mx, int my)
[virtual]

Mouse event notification for 2-D panel views.

Called when a mouse-activated panel area receives a mouse event.

Parameters:

id panel area identifier
event mouse event (see Mouse event identifiers)

mx,my relative mouse position in area at event

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returns false.

Note:

Mouse events are only sent for areas which requested notification during definition (see oapiRegister-
PanelArea).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 497

8.52.3.25 virtual bool VESSEL2::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf)
[virtual]

Redraw event notification for 2-D panel views.

Called when a registered panel area needs to be redrawn.

Parameters:

id panel area identifier
event redraw event (see Panel redraw event identifiers)

surf area surface handle

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returns false.

Note:

This callback function is only called for areas which were not registered with the PANEL_REDRAW_-
NEVER flag.
All redrawable panel areas receive a PANEL_REDRAW_INIT redraw notification when the panel is
created, in addition to any registered redraw notification events.
The surface handle surf contains either the current area state, or the area background, depending on
the flags passed during area registration.
The surface handle may be used for blitting operations, or to receive a Windows device context (DC)
for Windows-style redrawing operations.

See also:

0apiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

8.52.3.26 virtual bool VESSEL2::clbkLoadVC (intid) [virtual]
3-D virtual cockpit view mode request notification

Called when Orbiter tries to switch the cockpit view to a 3-D virtual cockpit mode (for example in response
to the user switching cockpit modes with F8).

Parameters:

id virtual cockpit identifier (>= 0)

Returns:

true if the vessel supports the requested virtual cockpit, false otherwise.

Default action:

None, returning false (i.e. virtual cockpit mode not supported).

Note:

Multiple virtual cockpit camera positions (e.g. for pilot and co-pilot) can be defined. In this case,
the body of clbkLLoadVC should examine the value of id and set the VC parameters accordingly.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.52 VESSEL?2 Class Reference 498

Multiple positions are defined by specifying the neighbour positions of the current position via a call
to oapiVCSetNeighbours.

In the body of this function the module should define MFD display targets (with oapiVCRegisterMFD)
and other active areas (with oapiVCRegisterArea) for the requested virtual cockpit.

See also:

clbkLoadGenericCockpit, clbkLoadPanel, oapiVCSetNeighbours, oapiVCRegisterArea

8.52.3.27 virtual bool VESSEL2::clbkVCMouseEvent (int id, int event, VECTOR3 & p)
[virtual]

Mouse event notification for 3-D virtual cockpit views.

Called when a mouse-activated virtual cockpit area receives a mouse event.

Parameters:

id area identifier
event mouse event (see Mouse event identifiers)

p parameter vector (area type-dependent, see notes)

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returning false.

Note:
To generate a mouse-activated area in a virtual cockpit, you must do the following when registering
the area during clbkLoadVC:

* register the area with a call to oapiVCRegisterArea with a mouse mode other than PANEL _-
MOUSE_IGNORE.

* define a mouse-click area in the vessel’s local frame. Use one of the
oapiVCRegisterAreaClickmode_XXX functions. You can define spherical or quadrilateral
click areas.

Parameter p returns information about the mouse position at the mouse event. The type of information
returned depends on the area type for which the event was generated:

* spherical area:

— p-x is distance of mouse event from area centre
— p.y and p.z not used

¢ quadrilateral area:

— p-x and p.y are the area-relative mouse x and y positions (top left = (0,0), bottom right =
(1,1)

— p-z not used

See also:

clbkLoadVC, clbkPanelMouseEvent, oapiVCRegisterArea

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 499

8.52.3.28 virtual bool VESSEL2::clbkVCRedrawEvent (int id, int event, SURFHANDLE surf)
[virtual]

Redraw event notification for 3-D virtual cockpit views.

Called when a registered virtual cockpit area needs to be redrawn.

Parameters:

id area identifier
event redraw event (see Panel redraw event identifiers)

surf associated texture handle

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returning false.

Note:

To allow an area of the virtual cockpit to be redrawn dynamically, the area must be registered
with oapiVCRegisterArea during clbkl.oadVC, using a redraw mode other than PANEL._REDRAW_-
NEVER.

When registering the area with oapiVCRegisterArea, you must also provide a handle to the texture
onto which the redrawn surface is mapped. This texture must be part of the virtual cockpit mesh, and
it must be listed in the mesh file with the "D’ ("dynamic") flag (see 3DModel.pdf).

"Redrawing" an area is not limited to dynamically updating textures. It may also involve mesh trans-
forms (e.g. to animate levers and switches rendered in 3D).

The documentation for this class was generated from the following files:

¢ Orbitersdk/include/Vessel APLh
 Orbitersdk/doxygen/API_reference/examples.cpp

8.53 VESSELS3 Class Reference

#include <VesselAPI.h>
Inheritance diagram for VESSEL3:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53

VESSELS3 Class Reference 500

Collaboration diagram for VESSEL3:

8.53.1 Detailed Description

Callback extensions to the VESSEL class.

The VESSELS3 class extends VESSEL2 with additional functionality. Developers should use this class for
new projects. Existing vessel addons can make use of the new features by switching the base class from
VESSEL2 to VESSELS3.

Public Member Functions

¢ VESSEL3 (OBJHANDLE hVessel, int fmodel=1)

Creates a VESSELS interface for a vessel object.

int SetPanelBackground (PANELHANDLE hPanel, SURFHANDLE xhSurf, DWORD nsurf,
MESHHANDLE hMesh, DWORD width, DWORD height, DWORD baseline=0, DWORD
scrollflag=0)

Set the background surface for a 2-D instrument panel.

int SetPanelScaling (PANELHANDLE hPanel, double defscale, double extscale)

Set scaling factors for 2-D instrument panel.

int RegisterPanelMFDGeometry (PANELHANDLE hPanel, int MFD_id, int nmesh, int ngroup)
Define an MFD display in the panel mesh.

int RegisterPanelArea (PANELHANDLE hPanel, int id, const RECT &pos, const RECT &texpos,
int draw_event, int mouse_event, int bkmode)

Register an area of the panel to receive mouse and redraw events.

int RegisterPanelArea (PANELHANDLE hPanel, int id, const RECT &pos, int draw_event, int
mouse_event, SURFHANDLE surf=NULL, void *context=NULL)

Register an area of the panel to receive mouse and redraw events.

virtual bool clbkPanelMouseEvent (int id, int event, int mx, int my, void *context)

Mouse event notification for 2-D panel views.

virtual bool clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf, void *context)

Redraw event notification for 2-D panel views.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 501

* virtual int clbkGeneric (int msgid=0, int prm=0, void *context=NULL)

Generic multi-purpose callback function.

e virtual bool clbklLoadPanel2D (int id, PANELHANDLE hPanel, DWORD viewW, DWORD
viewH)

Request for a 2D instrument panel definition in cockpit view.

¢ virtual bool clbkDrawHUD (int mode, const HUDPAINTSPEC xhps, oapi::Sketchpad xskp)

HUD redraw notification.

* virtual void clbkRenderHUD (int mode, const HUDPAINTSPEC xhps, SURFHANDLE hDefault-
Tex)

HUD render notification.

* virtual void clbkGetRadiationForce (const VECTOR3 &mflux, VECTOR3 &F, VECTOR3 &pos)

Returns force due to radiation pressure.

8.53.2 Constructor & Destructor Documentation

8.53.2.1 VESSEL3::VESSEL3 (OBJHANDLE #hVessel, int fmodel = 1)

Creates a VESSELS3 interface for a vessel object.

See also:

VESSEL?2

8.53.3 Member Function Documentation

8.53.3.1 int VESSEL3::SetPanelBackground (PANELHANDLE kPanel, SURFHANDLE x hSurf,
DWORD nsurf, MESHHANDLE hMesh, DWORD width, DWORD height, DWORD baseline = 0,
DWORD scrollflag = 0)

Set the background surface for a 2-D instrument panel.

Parameters:
hPanel panel handle
hSurf array of surface handles
nsurf number of surfaces
hMesh mesh handle defining the billboard geometry
width panel width [pixel]
height panel height [pixel]
baseline base line for edge attachment

scrollflag panel attachment and scrolling bitflags

Returns:

Always returns 0.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 502

Note:

This method should be applied in the body of clbkLLoadPanel2D.

The mesh defines the size and layout of the billboard mesh used for rendering the panel surface. Its
vertex coordinates are interpreted as transformed, i.e. in terms of screen coordinates (pixels). The z-
coordinate should be zero. Normals are ignored. Texture coordinates define which part of the surfaces
are rendered.

The groups are rendered in the order they appear in the mesh. Later groups cover earlier ones. There-
fore the groups should be arranged from backmost to frontmost elements.

In the simplest case, the mesh consists of a single rectangular area (4 nodes, 2 triangles) and a single
surface, but can be more elaborate.

The texture indices of the mesh groups (TexIdx) are interpreted as indices into the hSurf list (zero-
based).

This method increases the reference counters for the surfaces, so the caller should release them at some
point.

The surfaces can contain an alpha channel to handle transparency.

8.53.3.2 int VESSEL3::SetPanelScaling (PANELHANDLE #hPanel, double defscale, double
extscale)

Set scaling factors for 2-D instrument panel.

Parameters:

hPanel panel handle
defscale default scale factor

extscale additional scale factor

Returns:

Always returns 0.

Note:

The scaling factors define the scaling between mesh coordinates and screen pixels.

defscale is the default factor, extscale is an additional scale which can be selected by the user via the
mouse wheel.

Examples: scale=1: one mesh unit corresponds to one screen pixel, scale=viewW/panelW: panel fits
screen width

8.53.3.3 int VESSEL3::RegisterPanelMFDGeometry (PANELHANDLE hPanel, int MFD_id, int
nmesh, int ngroup)

Define an MFD display in the panel mesh.

Parameters:
hPanel panel handle
MFD_id MFD identifier (>= 0)
nmesh panel mesh index (>=0)

ngroup mesh group index (>=0)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 503

Returns:

Always returns 0.

Note:

This method reserves a mesh group for rendering the contents of an MFD display. The group should
define a square area (typically consisting of 4 nodes and 2 triangles) with appropriate texture coordi-
nates. When rendering the panel, the texture for this group is set to the current contents of the MFD
display.

The order of mesh groups defines the rendering order. To render the MFD display on top of the panel,
define it as the last group in the mesh. Alternatively, the MFD can be rendered first, if the panel texture
contains a transparent area through which to view the MFD.

8.53.3.4 int VESSELS3::RegisterPanelArea (PANELHANDLE hPanel, int id, const RECT & pos,
const RECT & texpos, int draw_event, int mouse_event, int bkmode)

Register an area of the panel to receive mouse and redraw events.

Parameters:

hPanel panel handle

id area identifier

pos area boundary coordinates (mesh coordinates)
texpos area boundary (texture coordinates)
draw_event event flags for redraw event triggers
mouse_event event flags for mouse event triggers

bkmode flag for texture background provided to redraw callback function

Returns:

Always returns 0.

Note:

This method activates a rectangular area of the panel for receiving mouse and redraw events.

pos specifies the borders of the area in ’logical’ coordinates (0,0,width,height) as specified by
SetPanelBackground. Registered mouse events within this area will trigger a call to VES-
SEL2::clbkPanelMouseEvent.

If the area needs to update one of the panel textures, the texture handle should be passed in A7gt, and
the affected area (in pixels) of the texture bitmap should be passed in fexpos.

8.53.3.5 int VESSEL3::RegisterPanelArea (PANELHANDLE hPanel, int id, const RECT & pos, int
draw_event, int mouse_event, SURFHANDLE surf = NULL, void * context = NULL)

Register an area of the panel to receive mouse and redraw events.

Parameters:
hPanel panel handle
id area identifier

pos area boundary coordinates (mesh coordinates)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 504

draw_event event flags for redraw event triggers
mouse_event event flags for mouse event triggers
surf surface handle passed to the redraw callback function

context user-defined data passed to the mouse and redraw callback functions

Returns:

Always returns 0.

Note:

This version passes the provided surface handle directly to the redraw callback, rather making a copy
of the area. This is useful if the area either doesn’t need to modify any surfaces, or blits parts of the
same surface (e.g. a texture that contains both the panel background and various elements (switches,
dials, etc.) to be copied on top.

Since the surface returned to the redraw function is not restricted to the registered area, it is the respon-
sibility of the caller not to draw outside the area.

The area boundaries defined in pos are only used for generating mouse events. If the area does not
process mouse events (PANEL_MOUSE_IGNORE), the pos parameter is ignored.

8.53.3.6 virtual bool VESSEL3::clbkPanelMouseEvent (int id, int event, int mx, int my, void * con-
text) [virtuall]

Mouse event notification for 2-D panel views.

Called when a mouse-activated panel area receives a mouse event.

Parameters:

id panel area identifier
event mouse event (see Mouse event identifiers)
mx,my relative mouse position in area at event

context user-supplied pointer to context data (defined in RegisterPanelArea)

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returns false.

Note:

If a vessel class overloads this method, it should return true. On a false return, Orbiter will try VES-
SEL2::clbkPanelMouseEvent instead.

Mouse events are only sent for areas which requested notification during definition (see RegisterPan-
elArea).

See also:

RegisterPanelArea

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 505

8.53.3.7 virtual bool VESSEL3::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf,
void x context) [virtual]

Redraw event notification for 2-D panel views.

Called when a registered panel area needs to be redrawn.

Parameters:

id panel area identifier
event redraw event (see Panel redraw event identifiers)
surf area surface handle

context user-supplied pointer to context data (defined in RegisterPanelArea)

Returns:

The function should return true if it processes the event, false otherwise.

Default action:

None, returns false.

Note:

This callback function is only called for areas which were not registered with the PANEL_REDRAW _-
NEVER flag.

If a vessel class overloads this method, it should return true. On a false return, Orbiter will try VES-
SEL2::clbkPanelRedrawEvent instead.

All redrawable panel areas receive a PANEL_REDRAW_INIT redraw notification when the panel is
created, in addition to any registered redraw notification events.

The surface handle surf contains either the current area state, or the area background, depending on
the flags passed during area registration.

The surface handle may be used for blitting operations, or to receive a Windows device context (DC)
for Windows-style redrawing operations.

See also:

RegisterPanelArea, oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

8.53.3.8 virtual int VESSEL3::clbkGeneric (int msgid = 0, int prm = 0, void * context = NULL)
[virtual]

Generic multi-purpose callback function.

Parameters:

msgid message identifier (see Generic vessel message identifiers)
prm message parameter

context pointer to additional message data

Returns:

Result flag.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 506

8.53.3.9 virtual bool VESSELS3::clbkLoadPanel2D (int id, PANELHANDLE hPanel, DWORD
viewW, DWORD viewH) [virtual]

Request for a 2D instrument panel definition in cockpit view.

Parameters:
id panel identifier (>=0)
hPanel panel handle
viewW viewport width [pixel]
viewH viewport height [pixel]

Returns:

The function should return frue if it supports the requested panel, false otherwise.

Default action:

None, returns false.

Note:

This method replaces VESSEL2::clbkLoadPanel. It defines the panels via SURFHANDLES instead
of bitmaps.

8.53.3.10 virtual bool VESSEL3::clbkDrawHUD (int mode, const HUDPAINTSPEC x hps,
oapi::Sketchpad * skp) [virtual]

HUD redraw notification.

Called when the vessel’s head-up display (HUD) needs to be redrawn (usually at each time step, unless
the HUD is turned off). Overwriting this function allows to implement vessel-specific modifications of the
HUD display (or to suppress the HUD altogether).

Parameters:

mode HUD mode (see HUD_x* constants in OrbiterAPIh)
hps pointer to a HUDPAINTSPEC structure (see notes)

skp drawing context instance

Returns:
Overloaded methods should return frue. If the return value is false, orbiter assumes that this method is
disabled and will try VESSEL2::clbkDrawHUD.

Default action:

Draws a standard HUD display with Orbiter’s default display layout and returns true.

Note:

If a vessel overwrites this method, Orbiter will draw the default HUD only if the base class VES-
SEL3::clbkDrawHUD is called.

hps points to a HUDPAINTSPEC structure containing information about the HUD drawing surface. It
has the following format:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.53 VESSELS3 Class Reference 507

typedef struct {
int W, H;
int CX, CY;
double Scale;
int Markersize;
} HUDPAINTSPEC;

where W and H are width and height of the HUD drawing surface in pixels, CX and CY are the x and
y coordinates of the HUD centre (the position of the "forward marker", which is not guaranteed to be
in the middle of the drawing surface or even within the drawing surface!), Scale represents an angular
aperture of 1 deg. expressed in HUD pixels, and Markersize is a "typical" size which can be used to
scale objects like direction markers.

The device context passed to clbkDrawHUD contains the appropriate settings for the current HUD
display (font, pen, colours). If you need to change any of the GDI settings, make sure to restore the
defaults before calling the base class clbkDrawHUD. Otherwise the default display will be corrupted.
clbkDrawHUD can be used to implement entirely new vessel- specific HUD modes. In this case, the
module would maintain its own record of the current HUD mode, and ignore the mode parameter
passed to clbkDrawHUD.

In glass cockpit and 2-D panel mode, the HUD display can be a combination of drawn elements (via
clbkDrawHUD) and rendered elements (via clbkRenderHUD). In VC mode, the HUD is always drawn.
To disable all default HUD display elements, a derived vessel should overload both clbkDrawHUD
and clbkRenderHUD.

See also:

clbkRenderHUD, Section HUD mode identifiers for a list of default mode identifiers.

8.53.3.11 virtual void VESSEL3::clbkRenderHUD (int mode, const HUDPAINTSPEC x hps,
SURFHANDLE hDefaultTex) [virtual]

HUD render notification.

Called when the vessel’s head-up display (HUD) needs to be rendered (usually at each time step, unless
the HUD is turned off). Overwriting this function allows to implement vessel-specific modifications of the
HUD display (or to suppress the HUD altogether).

Parameters:

mode HUD mode (see HUD_x* constants in OrbiterAPILh)
hps pointer to a HUDPAINTSPEC structure
hDefaultTex handle for default HUD texture

Default action:

Renders a standard HUD display with Orbiter’s default display layout.

Note:

This function is only called in glass cockpit or 2-D panel mode, not in VC (virtual cockpit mode).

In glass cockpit or 2-D panel mode, the programmer has a choice of using clbkRenderHUD or
clbkDrawHUD to display vessel-specific HUD elements. The use of clbkRenderHUD is preferred,
because it provides smoother animation, better performance and is better supported by external render
engines.

To disable all default HUD display, a derived vessel class should overload both clbkRenderHUD and
clbkDrawHUD.

To render custom HUD elements, the oapiRenderHUD function should be called from within this
callback function.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.54 VESSELSTATUS Struct Reference 508

See also:

clbkDrawHUD, oapiRenderHUD, Section HUD mode identifiers for a list of default mode identifiers.

8.53.3.12 virtual void VESSELS3::clbkGetRadiationForce (const VECTOR3 & mflux, VECTOR3
& F,VECTOR3 & pos) [virtual]

Returns force due to radiation pressure.

Parameters:

«— mflux momentum flux vector [N/m” 2] at current spacecraft position, transformed into vessel frame
— F radiation force vector [N] in vessel frame

— pos force attack point [m] in vessel frame

Default action:

Sets F = mflux * size2 * a, where a (albedo coefficient) is fixed to 1.5. Sets pos = (0,0,0). This
simple formula ignores any attitude-dependent variations in surface area, and any non-radial force
components due to oblique reflections. Does not induce any torque. For more sophisticated treatment,
vessels should re-implement this method.

Note:

This method is called by orbiter when perturbation forces due to radiation pressure need to be evalu-
ated. The implementation should take into account geometric factors (cross sections), surface factors
(absorption, reflection) and spacecraft attitude relative to the sun.

The momentum flux parameter, mflux, takes into account shadow effects from the closest planet, or
from the closest moon and its parent planet, if applicable.

If the returned force attack point pos is not set to the centre of gravity, (0,0,0), then a torque may be
induced as well as a linear force.

If the vessel contains multiple distinct surfaces, the returned force should be the vector sum of all
individual contributions, and the returned position should be the weighted barycentre of all individual
contributions w.r.t. the vessel centre of gravity.

The documentation for this class was generated from the following file:

¢ Orbitersdk/include/Vessel APL.h

8.54 VESSELSTATUS Struct Reference

#include <OrbiterAPI.h>
Collaboration diagram for VESSELSTATUS:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.54 VESSELSTATUS Struct Reference 509

8.54.1 Detailed Description

Vessel status parameters (version 1).

Defines vessel status parameters at a given time. This is version 1 of the vessel status interface. It is retained
for backward compatibility, but new modules should use VESSELSTATUS? instead to exploit the latest
vessel capabilities such as individual thruster and propellant resource settings.

Public Attributes

* VECTORS3 rpos

position relative to rbody in ecliptic frame [m]

e VECTORS3 rvel

velocity relative to rbody in ecliptic frame [m/s]

* VECTORS3 vrot

rotation velocity about principal axes in ecliptic frame [rad/s]

e VECTORS3 arot

vessel orientation against ecliptic frame

¢ double fuel
fuel level [0..1]

¢ double eng_main

main/retro engine setting [-1..1]

* double eng_hovr

hover engine setting [0..1]

* OBJHANDLE rbody
handle of reference body

* OBJHANDLE base
handle of docking or landing target

* int port

index of designated docking or landing port

e int status

[flight status indicator

* VECTOR3 vdata [10]

additional vector parameters

¢ double fdata [10]

additional floating point parameters (not used)

« DWORD flag [10]

additional integer and bitflag parameters

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.55 VESSELSTATUS?2 Struct Reference 510

8.54.2 Member Data Documentation

8.54.2.1 int VESSELSTATUS::status

flight status indicator

Note:
* O=active (freeflight)

¢ I=inactive (landed)

8.54.2.2 VECTOR3 VESSELSTATUS::vdata[10]

additional vector parameters

Note:

* vdata[0]: contains landing paramters if status == 1: vdata[0].x = longitude, vdata[0].y = latitude,
vdata[0].z = heading of landed vessel

e vdata[1] - vdata[9]: not used

8.54.2.3 DWORD VESSELSTATUS::flag[10]

additional integer and bitflag parameters

flag[0]&1:

* 0: ingore eng_main and eng_hovr entries, do not change thruster settings

e 1: set THGROUP_MAIN and THGROUP_RETRO thruster groups from eng_main, and
THGROUP_HOVER from eng_hovr.

flag[0] &2:

¢ 0: ignore fuel level, do not change fuel levels

* 1: set fuel level of first propellant resource from fuel

Note:
flag[1] - flag[9]: not used

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPIL.h

8.55 VESSELSTATUS?2 Struct Reference

#include <OrbiterAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.55 VESSELSTATUS?2 Struct Reference 511

Collaboration diagram for VESSELSTATUS?2:

8.55.1 Detailed Description

Vessel status parameters (version 2).
Defines vessel status parameters at a given time. This is version 2 of the vessel status interface and replaces
the earlier VESSELSTATUS structure. Functions using VESSELSTATUS are still supported for backward
compatibility.
Note:
The version specification is an input parameter for all function calls (including GetStatus) and must be
set by the user to tell Orbiter which interface to use.
See also:

VESSEL::GetStatusEx

Public Attributes

¢ DWORD version

interface version identifier (2)

DWORD flag
bit flags

OBJHANDLE rbody
handle of reference body

OBJHANDLE base
handle of docking or landing target

* int port

index of designated docking or landing port

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.55 VESSELSTATUS?2 Struct Reference

512

e int status

Sflight status indicator

* VECTORS3 rpos

position relative to reference body (rbody) in ecliptic frame [m]

e VECTORS3 rvel

velocity relative to reference body in ecliptic frame [m/s]

¢ VECTOR3 vrot

angular velocity around principal axes in ecliptic frame [rad/s]

¢ VECTOR3 arot

vessel orientation against ecliptic frame

¢ double surf_Ing

longitude of vessel position in equatorial coordinates of rbody [rad]

¢ double surf_lat

latitude of vessel position in equatorial coordinates of rbody [rad]

* double surf_hdg

vessel heading on the ground [rad]

¢ DWORD nfuel

number of entries in the fuel list

e struct VESSELSTATUS2::FUELSPEC x fuel
propellant list

¢ DWORD nthruster

number of entries in the thruster list

e struct VESSELSTATUS2:: THRUSTSPEC * thruster

thruster definition list

¢ DWORD ndockinfo

number of entries in the dockinfo list

e struct VESSELSTATUS2::DOCKINFOSPEC * dockinfo
dock info list

* DWORD xpdr
transponder channel [0...640]

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.55 VESSELSTATUS?2 Struct Reference 513

Classes

¢ struct DOCKINFOSPEC
dock info list

¢ struct FUELSPEC

propellant list

e struct THRUSTSPEC

thruster definition list

8.55.2 Member Data Documentation

8.55.2.1 DWORD VESSELSTATUS2::flag
bit flags

The meaning of the bitflags in flag depends on whether the VESSELSTATUS?2 structure is used to get
(GetStatus) or set (SetStatus) a vessel status. The following flags are currently defined:

flags:

* VS_FUELRESET

— Get - not used

— Set - reset all fuel levels to zero, independent of the fuel list.
e VS_FUELLIST

— Get - request a list of current fuel levels in fuel. The module is responsible for deleting the
list after use.

— Set - set fuel levels for all resources listed in fuel.
* VS_THRUSTRESET

— Get - not used

— Set - reset all thruster levels to zero, independent of the thruster list
e VS_THRUSTLIST

— Get - request a list of current thrust levels in thruster. The module is responsible for deleting
the list after use.

— Set - set thrust levels for all thrusters listed in thruster.
* VS_DOCKINFOLIST

— Get - request a docking port status list in dockinfo. The module is responsible for deleting
the list after use.

— Set - initialise docking status for all docking ports in dockinfo.

See also:

VESSEL::GetStatusEx

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.56 VESSELSTATUS2::DOCKINFOSPEC Struct Reference 514

8.55.2.2 int VESSELSTATUS2::status

flight status indicator

Note:

* O=active (freeflight)
¢ l=inactive (landed)

8.55.2.3 VECTOR3 VESSELSTATUS2::arot
vessel orientation against ecliptic frame

arot (a, 3, 7y) contains angles of rotation [rad] around x, y, z axes in ecliptic frame to produce this rotation
matrix R for mapping from the vessel’s local frame of reference to the global frame of reference:

1 0 0 cos 0 —sing cosy siny 0
R=1]0 cosa sina 0 1 0 —siny cosy 0
0 —sina cosa sin8 0 cosf 0 0 1

such that rglobal =R Tocal TP

where p is the vessel’s global position.

8.55.2.4 double VESSELSTATUS2::surf_Ing

longitude of vessel position in equatorial coordinates of rbody [rad]

Note:

currently only defined if the vessel is landed (status=1)

8.55.2.5 double VESSELSTATUS2::surf lat

latitude of vessel position in equatorial coordinates of rbody [rad]

Note:

currently only defined if the vessel is landed (status=1)

8.55.2.6 double VESSELSTATUS2::surf_hdg

vessel heading on the ground [rad]

Note:

currently only defined if the vessel is landed (status=1)

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.56 VESSELSTATUS2::DOCKINFOSPEC Struct Reference

#include <OrbiterAPI.h>

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

8.57 VESSELSTATUS2::FUELSPEC Struct Reference

515

8.56.1 Detailed Description

dock info list

Public Attributes

« DWORD idx

docking port index

* DWORD ridx

docking port index of docked vessel

¢ OBJHANDLE rvessel

docked vessel

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.57 VESSELSTATUS2::FUELSPEC Struct Reference

#include <OrbiterAPI.h>

8.57.1 Detailed Description

propellant list

Public Attributes

* DWORD idx

propellant index

¢ double level

propellant level

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

8.58 VESSELSTATUS2::THRUSTSPEC Struct Reference

#include <OrbiterAPI.h>

8.58.1 Detailed Description

thruster definition list

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9 Orbiter API File Documentation

516

Public Attributes

* DWORD idx

thruster index

¢ double level

thruster level

The documentation for this struct was generated from the following file:

¢ Orbitersdk/include/OrbiterAPL.h

9 Orbiter API File Documentation

9.1 Orbitersdk/include/CelBodyAPLh File Reference
9.1.1 Detailed Description

Contains interface classes for celestial bodies: CELBODY and CELBODY?2.

Classes

¢ class CELBODY

This is the base class for celestial body classes.

¢ class CELBODY2
Extension to CELBODY class.

¢ class ATMOSPHERE

Defines the physical atmospheric properties for a celestial body.

e struct ATMOSPHERE::PRM_IN

Input parameters for atmospheric data calculation.

e struct ATMOSPHERE::PRM_OUT

Output parameters for atmospheric data calculation.

Defines

e #define EPHEM_TRUEPOS 0x01

true body position

¢ #define EPHEM_TRUEVEL 0x02

true body velocity

* #define EPHEM_BARYPOS 0x04

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.2 Orbitersdk/include/DrawAPLh File Reference 517

barycentric position

#define EPHEM_BARY VEL 0x08

barycentric velocity

#define EPHEM_BARYISTRUE 0x10
body has no child objects

#define EPHEM_PARENTBARY 0x20

ephemerides are computed in terms of the barycentre of the parent body’s system

#define EPHEM_POLAR 0x40

data is returned in polar format

9.2 Orbitersdk/include/DrawAPLh File Reference
9.2.1 Detailed Description

2-D surface drawing support interface.
#include "OrbiterAPI.h"

Include dependency graph for DrawAPLh:

Namespaces

* namespace oapi

Classes

* union oapi::IVECTOR2

Integer-valued 2-D vector type.

* class oapi::DrawingTool

Base class for various 2-D drawing resources (fonts, pens, brushes, etc.).

* class oapi::Font

A font resource for drawing text. A font has a defined size, typeface, slant, weight, etc. Fonts can be selected
into a Sketchpad and then apply to all subsequent Text calls.

* class oapi::Pen

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.3 Orbitersdk/include/MFDAPILh File Reference 518

A pen is a resource used for drawing lines and the outlines of closed figures such as retangles, ellipses and
polygons.

e class oapi::Brush

A brush is a drawing resource for filling closed figures (rectangles, ellipses, polygons).

* class oapi::Sketchpad

A Sketchpad object defines an environment for drawing onto 2-D surfaces.

9.3 Orbitersdk/include/MFDAPILh File Reference
9.3.1 Detailed Description

Class interfaces for MFD instruments and MFD modes.
#include "OrbiterAPI.h"
Include dependency graph for MFDAPL h:

Classes

e class MFD

This class acts as an interface for user defined MFD (multi functional display) modes.

class MFD2
Extended MFD class.

* class GraphMFD
This class is derived from MFD and provides a template for MFD modes containing 2D graphs.

* class ExternMFD
ExternMFD provides support for defining an MFD display in a plugin module.

9.4 Orbitersdk/include/OrbiterAPLh File Reference
9.4.1 Detailed Description

General API interface functions.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 519

Todo

Check functions in VESSELSTATUS2::arot and oapiGetPlanetObliquityMatrix(), minus sign has
changed a place in a matrix. Is this correct??

Todo

class CameraMode documentation

#include <fstream>
#include <windows.h>
#include <float.h>
#include <math.h>
#include "lua\lua.h"

Include dependency graph for OrbiterAPLh:

This graph shows which files directly or indirectly include this file:

Namespaces

* namespace oapi

Classes

e union VECTOR3

3-element vector

¢ union MATRIX3

3x3-element matrix

struct COLOUR4

colour definition

e struct NTVERTEX

vertex definition including normals and texture coordinates

struct MESHGROUP

Defines a mesh group (subset of a mesh).

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 520

* struct MESHGROUPEX

extended mesh group definition

* struct GROUPEDITSPEC

Structure used by oapiEditMeshGroup to define the group elements to be replaced.

e struct MATERIAL

material definition

e struct ELEMENTS

Kepler orbital elements.

¢ struct ORBITPARAM
Secondary orbital parameters derived from the primary ELEMENTS.

e struct ATMCONST

Planetary atmospheric constants structure.

¢ struct ATMPARAM

Atmospheric parameters structure.

¢ struct ENGINESTATUS

Engine status.

e struct EXHAUSTSPEC

Engine exhaust render parameters.

¢ struct PARTICLESTREAMSPEC

Farticle stream parameters.

¢ class LightEmitter

Base class for defining a light source that can illuminate other objects.

e class PointLight

Class for isotropic point light source.

* class SpotLight

Class for directed spot light sources.

e struct NAVDATA

Navigation transmitter data.

¢ struct BEACONLIGHTSPEC

vessel beacon light parameters

* struct VESSELSTATUS

Vessel status parameters (version 1).

e struct VESSELSTATUS?2

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 521

Vessel status parameters (version 2).

* struct VESSELSTATUS2::FUELSPEC
propellant list

* struct VESSELSTATUS2:: THRUSTSPEC

thruster definition list

 struct VESSELSTATUS2::DOCKINFOSPEC
dock info list

e struct LISTENTRY

Entry specification for selection list entry.

 struct HELPCONTEXT

Context information for an Orbiter ingame help page.

¢ struct MESHGROUP_TRANSFORM

This structure defines an affine mesh group transform (translation, rotation or scaling).

¢ struct ANIMATIONCOMP

Animation component definition.

e struct ANIMATION

Animation definition.

* union HUDPARAM
Mode-specific parameters for HUD mode settings.

¢ class Launchpadltem

Base class to define launchpad items.

Defines

¢ #define DLLEXPORT __declspec(dllexport)

¢ #define DLLIMPORT __declspec(dllimport)

* #define DLLCLBK extern "C" __declspec(dllexport)
¢ #define OAPIFUNC DLLIMPORT

* #define GRPEDIT_SETUSERFLAG 0x0001

replace the group’s UsrFlag entry with the value in the GROUPEDITSPEC structure.

¢ #define GRPEDIT_ADDUSERFLAG 0x0002
Add the UsrFlag value to the group’s UsrFlag entry.

¢ #define GRPEDIT_DELUSERFLAG 0x0004
Remove the UsrFlag value from the group’s UsrFlag entry.

* #define GRPEDIT_VTXCRDX 0x0008

Replace vertex x-coordinates.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 522

* #define GRPEDIT_VTXCRDY 0x0010

Replace vertex y-coordinates.

¢ #define GRPEDIT_VTXCRDZ 0x0020

Replace vertex z-coordinates.

o #define GRPEDIT_VTXCRD (GRPEDIT_VTXCRDX | GRPEDIT_VTXCRDY | GRPEDIT_-
VTXCRDZ)

Replace vertex coordinates.

* #define GRPEDIT_VTXNMLX 0x0040

Replace vertex x-normals.

* #define GRPEDIT_VTXNMLY 0x0080

Replace vertex y-normals.

¢ #define GRPEDIT_VTXNMLZ 0x0100

Replace vertex z-normals.

« #define GRPEDIT_VTXNML (GRPEDIT_VTXNMLX | GRPEDIT_VTXNMLY | GRPEDIT_-
VTXNMLZ)

Replace vertex normals.

* #define GRPEDIT_VTXTEXU 0x0200

Replace vertex u-texture coordinates.

¢ #define GRPEDIT_VTXTEXYV 0x0400

Replace vertex v-texture coordinates.

¢ #define GRPEDIT_VTXTEX (GRPEDIT_VTXTEXU | GRPEDIT_VTXTEXV)

Replace vertex texture coordinates.

« #define GRPEDIT_VTX (GRPEDIT_VTXCRD | GRPEDIT_VTXNML | GRPEDIT_VTXTEX)

Replace vertices.

* #define EXHAUST_CONSTANTLEVEL 0x0001

exhaust level is constant

* #define EXHAUST_CONSTANTPOS 0x0002

exhaust position is constant

¢ #define EXHAUST_CONSTANTDIR 0x0004

exhaust direction is constant

¢ #define BEACONSHAPE_COMPACT 0

compact beacon shape

* #define BEACONSHAPE_DIFFUSE 1

diffuse beacon shape

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

523

 #define BEACONSHAPE_STAR 2

star-shaped beacon

* #define VS_FUELRESET 0x00000001

set all propellant levels to zero

e #define VS_FUELLIST 0x00000002

list of propellant levels is provided

* #define VS_THRUSTRESET 0x00000004

set all thruster levels to zero

¢ #define VS_THRUSTLIST 0x00000008

list of thruster levels is provided

¢ #define VS_DOCKINFOLIST 0x00000010
list of docked objects is provided

e #define LISTENTRY_SUBITEM 0x01

list entry has subitems

e #define LISTENTRY_INACTIVE 0x02

list entry can not be selected

* #define LISTENTRY_SEPARATOR 0x04

entry is followed by a separator

* #define LIST_UPENTRY 0x01

list has parent list

* #define LISTCLBK_CANCEL 0x00

user cancelled the selection list

* #define LISTCLBK_SELECT 0x01

user selected an item

¢ #define LISTCLBK_SUBITEM 0x02

user steps down to subitem

¢ #define LISTCLBK_UPLIST 0x03

user steps up to parent list

+ #define LOCALVERTEXLIST ((UINT)(-1))

flags animation component as explicit vertex list

« #define MAKEGROUPARRAY (x) ((UINT#)x)

casts a vertex array into a group

¢ #define MFD_SHOWMODELABELS 1

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 524

* #define AIRCTRL_AXIS_AUTO 0

Constants to define the rotation axis and direction of aerodynamic control surfaces.

e #define AIRCTRL_AXIS_YPOS 1

y-axis (vertical), positive rotation

* #define AIRCTRL_AXIS_YNEG 2

y-axis (vertical), negative rotation

* #define AIRCTRL_AXIS_XPOS 3

x-axis (transversal), positive rotation

* #define AIRCTRL_AXIS_XNEG 4

Xx-axis (transversal), negative rotation

¢ #define OBJTP_INVALID 0

¢ #define OBJTP_GENERIC 1

¢ #define OBJTP_CBODY 2

¢ #define OBJTP_STAR 3

* #define OBJTP_PLANET 4

* #define OBJTP_VESSEL 10

e #define OBJTP_SURFBASE 20

e #define EVENT_VESSEL_INSMESH 0

Insert a mesh (context: mesh index).

* #define EVENT_VESSEL_DELMESH 1

Delete a mesh (context: mesh index, or -1 for all).

* #define EVENT_VESSEL_MESHVISMODE 2

Set mesh visibility mode (context: mesh index).

* #define EVENT_VESSEL_RESETANIM 3

Reset animations.

* #define EVENT_VESSEL_CLEARANIM 4

Clear all animations (context: UINT (1=reset animations, O=leave animations at current state).

* #define EVENT_VESSEL_DELANIM 5

Delete an animation (context: animation index).

* #define EVENT_VESSEL_NEWANIM 6

Create a new animation (context: animation index).

* #define EVENT_VESSEL_MESHOEFS 7

Shift a mesh (context: mesh index).

¢ #define EVENT_VESSEL_MODMESHGROUP 8
A mesh group has been modified.

#define NAVMODE_KILLROT 1

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 525

"Kill rotation" mode

* #define NAVMODE_HLEVEL 2

"Hold level with horizon" mode

¢ #define NAVMODE_PROGRADE 3

"Prograde" mode

* #define NAVMODE_RETROGRADE 4

"Retrograde" mode

* #define NAVMODE_NORMAL 5

"Normal to orbital plane" mode

* #define NAVMODE_ANTINORMAL 6

"Anti-normal to orbital plane" mode

e #define NAVMODE_HOLDALT 7
"Hold altitude" mode

* #define MANCTRL_ATTMODE 0

current attitude mode

* #define MANCTRL_REVMODE 1

reverse of current attitude mode

¢ #define MANCTRL_ROTMODE 2

rotational attitude modes only

¢ #define MANCTRL_LINMODE 3

linear attitude modes only

* #define MANCTRL_ANYMODE 4

rotational and linear modes

¢ #define MANCTRL_KEYBOARD 0
keyboard input

e #define MANCTRL_JOYSTICK 1
Jjoystick input

¢ #define MANCTRL_ANYDEVICE 2

input from any device

e #define COCKPIT_GENERIC 1

¢ #define COCKPIT_PANELS 2

¢ #define COCKPIT_VIRTUAL 3

¢ #define CAM_COCKPIT 0

¢ #define CAM_TARGETRELATIVE 1
¢ #define CAM_ABSDIRECTION 2

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 526

#define CAM_GLOBALFRAME 3

#define CAM_TARGETTOOBJECT 4

#define CAM_TARGETFROMOBJECT 5

#define CAM_GROUNDOBSERVER 6

#define PROP_ORBITAL 0xOF

#define PROP_ORBITAL_ELEMENTS 0x00

#define PROP_ORBITAL_FIXEDSTATE 0x01
#define PROP_ORBITAL_FIXEDSURF 0x02

#define PROP_SORBITAL 0xF0

#define PROP_SORBITAL_ELEMENTS (0x0 << 4)
#define PROP_SORBITAL_FIXEDSTATE (0x1 << 4)
#define PROP_SORBITAL_FIXEDSURF (0x2 << 4)
#define PROP_SORBITAL_DESTROY (0x3 << 4)
#define USRINPUT_NEEDANSWER 1

#define RCS_NONE 0

None (RCS off).

#define RCS_ROT 1

Rotational mode.

#define RCS_LIN 2

Linear (translational) mode.

#define HUD_NONE 0
No mode (turn HUD off).

#define HUD_ORBIT 1
Orbit HUD mode.

#define HUD_SURFACE 2
Surface HUD mode.

#define HUD_DOCKING 3
Docking HUD mode.

#define MFD_REFRESHBUTTONS -1
Refresh MFD buttons.

#define MFD_NONE 0
No mode (turn MFD off).

#define MFD_ORBIT 1
Orbit MFD mode.

#define MFD_SURFACE 2
Surface MFD mode.

#define MFD_MAP 3
Map MFD mode.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

527

e #define MFD_HSI 4

HSI (horizontal situation indicator) MFD mode.

e #define MFD_LANDING 5
VTOL support MFD mode.

¢ #define MFD_DOCKING 6
Docking support MFD mode.

¢ #define MFD_OPLANEALIGN 7
Orbital plane alignment MFD mode.

¢ #define MFD_OSYNC 8
Orbit synchronisation MFD mode.

¢ #define MFD_TRANSFER 9
Transfer orbit MFD mode.

¢ #define MFD_COMMS 10

Communications MFD mode.

e #define MFD_USERTYPE 64
User-defined MFD mode.

e #define BUILTIN_MFD_MODES 10
Number of built-in MFD modes.

* #define MAXMFD 10
Max. number of MFD displays per panel.

e #define MFD_LEFT 0
Left default MFD display.

e #define MFD_RIGHT 1
Right default MFD display.

e #define MFD_USERI1 2
User-defined MFD display 1.

e #define MFD_USER?2 3
User-defined MFD display 2.

* #define MFD_USER3 4
User-defined MFD display 3.

* #define MFD_USER4 5
User-defined MFD display 4.

¢ #define MFD_USERS 6
User-defined MFD display 5.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

528

* #define MFD_USERG6 7
User-defined MFD display 6.

e #define MFD_USER7 8
User-defined MFD display 7.

¢ #define MFD_USERS 9
User-defined MFD display 8.

e #define PANEL_LEFT 0
left neighbour

¢ #define PANEL_RIGHT 1
right neighbour

e #define PANEL_UP 2

above neighbour

* #define PANEL_DOWN 3

below neighbour

* #define PANEL_REDRAW_NEVER 0x00

Don’t generate redraw events.

* #define PANEL_REDRAW_ALWAYS 0x01

Generate event at each frame.

* #define PANEL_REDRAW_MOUSE 0x02

Generate event on mouse event.

¢ #define PANEL_REDRAW_INIT 0x03

Initialisation event.

* #define PANEL_REDRAW_USER 0x04

User-generated event.

* #define PANEL_MOUSE_IGNORE 0x00

Don’t generate mouse events.

e #define PANEL_MOUSE_LBDOWN 0x01

Left button down event.

* #define PANEL_MOUSE_RBDOWN 0x02

Right button down event.

¢ #define PANEL_MOUSE_LBUP 0x04

Left button release event.

#define PANEL_MOUSE_RBUP 0x08

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

94

Orbitersdk/include/OrbiterAPLh File Reference

529

Right button release event.

#define PANEL_MOUSE_LBPRESSED 0x10

Left button down (continuous).

#define PANEL_MOUSE_RBPRESSED 0x20

Right button down (continuous).

#define PANEL_MOUSE_DOWN 0x03

Composite down event.

#define PANEL_MOUSE_UP 0x0C

Composite release event.

#define PANEL_MOUSE_PRESSED 0x30

Composite down (continous).

#define PANEL_MOUSE_ONREPLAY 0x40

Create mouse events during replay.

#define PANEL_MAP_NONE 0x00

#define PANEL_MAP_BACKGROUND 0x01
#define PANEL_MAP_CURRENT 0x02
#define PANEL_MAP_BGONREQUEST 0x03
#define PANEL_ATTACH_BOTTOM 0x0001
#define PANEL_ATTACH_TOP 0x0002
#define PANEL_ATTACH_LEFT 0x0004
#define PANEL_ATTACH_RIGHT 0x0008
#define PANEL_MOVEOUT_BOTTOM 0x0010
#define PANEL_MOVEOUT_TOP 0x0020
#define PANEL_MOVEOUT_LEFT 0x0040
#define PANEL_MOVEOUT_RIGHT 0x0080
#define SURF_NO_CK 0xFFFFFFFF

#define SURF_PREDEF_CK 0xFFFFFFFE
#define SURF_NO_ROTATION (DWORD)-1)
#define SURF_HMIRROR ((DWORD)-2)
#define SURF_VMIRROR ((DWORD)-3)
#define SURF_ROTATE_90 (DWORD)-4)
#define SURF_ROTATE_180 ((DWORD)-5)
#define SURF_ROTATE_270 ((DWORD)-6)
#define DLG_ALLOWMULTI 0x 1

#define DLG_CAPTIONCLOSE 0x2

#define DLG_CAPTIONHELP 0x4

#define DLG_CB_TWOSTATE 0x 1

#define OAPI_MSG_MFD_OPENED |
#define OAPI_MSG_MFD_CLOSED 2
#define OAPI_MSG_MFD_UPDATE 3
#define OAPI_MSG_MFD_OPENEDEX 4
#define VMSG_LUAINTERPRETER 0x0001

initialise Lua interpreter

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

94

Orbitersdk/include/OrbiterAPLh File Reference 530

#define VMSG_LUAINSTANCE 0x0002

create Lua vessel instance

#define VMSG_USER 0x1000

base index for user-defined messages

#define MESHVIS_NEVER 0x00

Mesh is never visible.

#define MESHVIS_EXTERNAL 0x01

Mesh is visible in external views.

#define MESHVIS_COCKPIT 0x02

Mesh is visible in internal (cockpit) views.

#define MESHVIS_ALWAYS (MESHVIS_EXTERNAL|MESHVIS_COCKPIT)

Mesh is always visible.

#define MESHVIS_VC 0x04

Mesh is only visible in virtual cockpit internal views.

#define MESHVIS_EXTPASS 0x10

Visibility modifier: render mesh during external pass, even for internal views.

#define MESHPROPERTY_MODULATEMATALPHA 1
#define TRANSMITTER_NONE 0

#define TRANSMITTER_VOR 1

#define TRANSMITTER_VTOL 2

#define TRANSMITTER _ILS 3

#define TRANSMITTER _IDS 4

#define TRANSMITTER_XPDR 5

#define OBJPRM_PLANET_SURFACEMAXLEVEL 0x0001

Max. resolution level for planet surface rendering. (Parameter type: DWORD).

#define OBJPRM_PLANET_SURFACERIPPLE 0x0002
Flag for ripple effect on reflective surfaces (Parameter type: bool).

#define OBJPRM_PLANET_HAZEEXTENT 0x0003

Bleed-in factor of atmospheric haze into planet disc. (Parameter type: double; range: 0-0.9).

#define OBJPRM_PLANET_HAZEDENSITY 0x0004

Density at which the horizon haze is rendered (basic density is calculated from atmospheric density) Default:
1.0. (Parameter type: double).

#define OBJPRM_PLANET_HAZESHIFT 0x0005
#define OBJPRM_PLANET_HAZECOLOUR 0x0006
#define OBJPRM_PLANET_FOGPARAM 0x0007
#define OBJPRM_PLANET_SHADOWCOLOUR 0x0008
#define OBJPRM_PLANET_HASCLOUDS 0x0009

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

531

#define OBJPRM_PLANET_CLOUDALT 0x000A

#define OBJPRM_PLANET_CLOUDROTATION 0x000B
#define OBJPRM_PLANET_CLOUDSHADOWCOL 0x000C
#define OBJPRM_PLANET_CLOUDMICROTEX 0x000D
#define OBJPRM_PLANET_CLOUDMICROALTMIN 0x000E
#define OBJPRM_PLANET_CLOUDMICROALTMAX 0x000F
#define OBJPRM_PLANET_HASRINGS 0x0010

#define OBJPRM_PLANET_RINGMINRAD 0x0011

#define OBJPRM_PLANET_RINGMAXRAD 0x0012

#define OBJPRM_PLANET_ATTENUATIONALT 0x0013

Altitude [m] up to which an atmosphere attenuates light cast from the sun on a spacecraft. (Parameter type:

double).

#define OAPI_KEY_ESCAPE 0x01

Escape key.

#define OAPI_KEY_1 0x02

"1’ key on main keyboard

#define OAPI_KEY_2 0x03

'2’ key on main keyboard

#define OAPI_KEY_3 0x04

'3’ key on main keyboard

#define OAPI_KEY_4 0x05

4’ key on main keyboard

#define OAPI_KEY_5 0x06

’5’ key on main keyboard

#define OAPI_KEY_6 0x07
’6° key on main keyboard

#define OAPI_KEY_7 0x08

’7’ key on main keyboard

#define OAPI_KEY_8 0x09

'8’ key on main keyboard

#define OAPI_KEY_9 0x0A

'9’ key on main keyboard

#define OAPI_KEY_0 0x0OB

"0’ key on main keyboard

#define OAPI_KEY_MINUS 0x0C

'~ key on main keyboard

#define OAPI_KEY_EQUALS 0x0D

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

532

'=" key on main keyboard

* #define OAPI_KEY_BACK 0x0E
backspace key

¢ #define OAPI_KEY_TAB 0xOF
tab key

¢ #define OAPI_KEY_Q 0x10
'Q key

e #define OAPI_KEY_W 0x11
"W’ key

e #define OAPI_KEY_E 0x12
'E’ key

¢ #define OAPI_KEY_R 0x13
'R’ key

e #define OAPI_KEY_T 0x14
T’ key

* #define OAPI_KEY_Y Ox15
'Y’ key

¢ #define OAPI_KEY_U 0x16
U’ key

¢ #define OAPI_KEY_I 0x17
I’ key

¢ #define OAPI_KEY_O 0x18
"0’ key

¢ #define OAPI_KEY_P 0x19
P’ key

¢ #define OAPI_KEY_LBRACKET Ox1A

[(left bracket) key

¢ #define OAPI_KEY_RBRACKET 0x1B
']’ (right bracket) key

* #define OAPI_KEY_RETURN 0x1C

"Enter’ key on main keyboard

¢ #define OAPI_KEY_LCONTROL 0x1D
Left "Ctrl’ key.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

533

e #define OAPI_KEY_A Ox1E
'A’ key

e #define OAPI_KEY_S Ox1F
'S’ key

¢ #define OAPI_KEY_D 0x20
‘D’ key

e #define OAPI_KEY_F 0x21
'F’ key

e #define OAPI_KEY_G 0x22
‘G’ key

¢ #define OAPI_KEY_H 0x23
"H’ key

e #define OAPI_KEY_J 0x24
"J’ key

¢ #define OAPI_KEY_K 0x25
K’ key

e #define OAPI_KEY_L 0x26
'L’ key

e #define OAPI_KEY_SEMICOLON 0x27

s (semicolon) key

¢ #define OAPI_KEY_APOSTROPHE 0x28
" (apostrophe) key

* #define OAPI_KEY_GRAVE 0x29

accent grave

 #define OAPI_KEY_LSHIFT 0x2A
Left "Shift’ key.

e #define OAPI_KEY_BACKSLASH 0x2B
"\’ (Backslash) key

e #define OAPI_KEY_Z 0x2C
7’ key

¢ #define OAPI_KEY_X 0x2D
‘X’ key

e #define OAPI_KEY_C 0x2E
'C’ key

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

534

 #define OAPI_KEY_V 0x2F
'V’ key
¢ #define OAPI_KEY_B 0x30
‘B’ key
¢ #define OAPI_KEY_N 0x31
‘N’ key
e #define OAPI_KEY_M 0x32
‘M’ key
¢ #define OAPI_KEY_COMMA 0x33

" (comma) key

* #define OAPI_KEY_PERIOD 0x34

" key on main keyboard

* #define OAPI_KEY_SLASH 0x35

/" key on main keyboard

¢ #define OAPI_KEY_RSHIFT 0x36
Right "Shift’ key.

* #define OAPI_KEY_MULTIPLY 0x37

* on numeric keypad

« #define OAPI_KEY_LALT 0x38
left Alt

¢ #define OAPI_KEY_SPACE 0x39
"Space’ key

 #define OAPI_KEY_CAPITAL 0x3A
caps lock key

* #define OAPI_KEY_F1 0x3B
F1 function key.

e #define OAPI_KEY_F2 0x3C
F2 function key.

* #define OAPI_KEY_F3 0x3D
F3 function key.

¢ #define OAPI_KEY_F4 0x3E
F4 function key.

#define OAPI_KEY_F5 0x3F

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

535

F5 function key.

¢ #define OAPI_KEY_F6 0x40
Fo6 function key.

* #define OAPI_KEY_F7 0x41
F7 function key.

* #define OAPI_KEY_F8 0x42
F8 function key.

¢ #define OAPI_KEY_F9 0x43
F9 function key.

¢ #define OAPI_KEY_F10 0x44
F10 function key.

e #define OAPI_KEY_NUMLOCK 0x45
"Num Lock’ key

¢ #define OAPI_KEY_SCROLL 0x46
Scroll lock.

* #define OAPI_KEY_NUMPAD7 0x47

'7’ key on numeric keypad

* #define OAPI_KEY_NUMPADS 0x48

'8’ key on numeric keypad

* #define OAPI_KEY_NUMPAD9Y 0x49

'9’ key on numeric keypad

* #define OAPI_KEY_SUBTRACT 0x4A

- key on numeric keypad

* #define OAPI_KEY_NUMPAD4 0x4B

’4’ key on numeric keypad

* #define OAPI_KEY_NUMPADS 0x4C

’5’ key on numeric keypad

* #define OAPI_KEY_NUMPADG6 0x4D

'6’ key on numeric keypad

e #define OAPI_KEY_ADD 0x4E

"+’ key on numeric keypad

* #define OAPI_KEY_NUMPADI1 0x4F

"1’ key on numeric keypad

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

536

* #define OAPI_KEY_NUMPAD2 0x50

’2’ key on numeric keypad

* #define OAPI_KEY_NUMPAD3 0x51

'3’ key on numeric keypad

* #define OAPI_KEY_NUMPADO 0x52

"0’ key on numeric keypad

* #define OAPI_KEY_DECIMAL 0x53

" key on numeric keypad

* #define OAPI_KEY_OEM_102 0x56
| < > on UK/German keyboards

 #define OAPI_KEY_F11 0x57
F11 function key.

* #define OAPI_KEY_F12 0x58
F12 function key.

* #define OAPI_KEY_NUMPADENTER 0x9C

Enter on numeric keypad.

¢ #define OAPI_KEY_RCONTROL 0x9D
right Control key

* #define OAPI_KEY_DIVIDE 0xB5

/" key on numeric keypad

¢ #define OAPI_KEY_RALT 0xB8
right Alt

¢ #define OAPI_KEY_HOME 0xC7

Home on cursor keypad.

* #define OAPI_KEY_UP 0xC8

up-arrow on cursor keypad

* #define OAPI_KEY_PRIOR 0xC9
PgUp on cursor keypad.

* #define OAPI_KEY_LEFT 0xCB

left-arrow on cursor keypad

* #define OAPI_KEY_RIGHT 0xCD

right-arrow on cursor keypad

¢ #define OAPI_KEY_END 0xCF

End on cursor keypad.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

94

Orbitersdk/include/OrbiterAPLh File Reference

537

#define OAPI_KEY_DOWN 0xD0O

down-arrow on cursor keypad

#define OAPI_KEY_NEXT 0xD1
PgDn on cursor keypad.

#define OAPI_KEY_INSERT 0xD2

Insert on cursor keypad.

#define OAPI_KEY_DELETE 0xD3

Delete on cursor keypad.

#define KEYDOWN(buf, key) (buf[key] & 0x80)

#define RESETKEY (buf, key) (buffkey] = 0)

#define KEYMOD_LSHIFT(buf) (KEYDOWN(buf,0API_KEY_LSHIFT))
#define KEYMOD_RSHIFT (buf) (KEYDOWN(buf,0API_KEY_RSHIFT))
#define KEYMOD_SHIFT(buf) (KEYMOD_LSHIFT(buf) || KEYMOD_RSHIFT (buf))
#define KEYMOD_LCONTROL (buf) (KEYDOWN(buf,0API_KEY_LCONTROL))
#define KEYMOD_RCONTROL (buf) (KEYDOWN(buf,0API_KEY _RCONTROL))
(KEYMOD_LCONTROL(buf)

#define KEYMOD_CONTROL (buf)
RCONTROL(buf))

#define KEYMOD_LALT (buf) (KEYDOWN(buf,OAPI_KEY_LALT))
#define KEYMOD_RALT(buf) (KEYDOWN(buf,OAPI_KEY_RALT))
#define KEYMOD_ALT(buf) (KEYMOD_LALT(buf) || KEYMOD_RALT(buf))

#define OAPI_LKEY_CockpitRotateLeft 0

rotate camera left in cockpit view

#define OAPI_LKEY_CockpitRotateRight 1

rotate camera right in cockpit view

#define OAPI_LKEY_CockpitRotateUp 2

rotate camera up in cockpit view

#define OAPI_LKEY_CockpitRotateDown 3

rotate camera down in cockpit view

#define OAPI_LKEY_CockpitDontLean 4

return to default cockpit camera position

#define OAPI_LKEY_CockpitLeanForward 5

move cockpit camera forward

#define OAPI_LKEY_CockpitLeanLeft 6

move cockpit camera left

#define OAPI_LKEY_CockpitLeanRight 7

move cockpit camera right

#define OAPI_LKEY_CockpitResetCam 8

KEYMOD_-

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

538

rotate and shift cockpit camera back to default

e #define OAPI_LKEY_PanelShiftLeft 9
shift 2D instrument panel left

o #define OAPI_LKEY_PanelShiftRight 10
shift 2D instrument panel right

* #define OAPI_LKEY_PanelShiftUp 11
shift 2D instrument panel up

¢ #define OAPI_LKEY_PanelShiftDown 12

shift 2D instrument panel down

¢ #define OAPI_LKEY_PanelSwitchLeft 13

switch to left neighbour panel

* #define OAPI_LKEY_PanelSwitchRight 14

switch to right neighbour panel

e #define OAPI_LKEY_PanelSwitchUp 15

switch to upper neighbour panel

e #define OAPI_LKEY_PanelSwitchDown 16

switch to lower neighbour panel

¢ #define OAPI_LKEY_TrackRotateLeft 17

turn track view camera left

¢ #define OAPI_LKEY_TrackRotateRight 18

turn track view camera right

¢ #define OAPI_LKEY_TrackRotateUp 19

turn track view camera up

¢ #define OAPI_LKEY_TrackRotateDown 20

turn track view camera down

e #define OAPI_LKEY_TrackAdvance 21

advance track view camera towards target

o #define OAPI_LKEY_TrackRetreat 22

retreat track view camera from target

¢ #define OAPI_LKEY_GroundTiltLeft 23

tilt camera left in ground view

* #define OAPI_LKEY_GroundTiltRight 24

tilt camera right in ground view

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

539

* #define OAPI_LKEY_GroundTiltUp 25

tilt camera up in ground view

e #define OAPI_LKEY_GroundTiltDown 26

tilt camera down in ground view

e #define OAPI_LKEY_IncMainThrust 27

increment thrust of main thrusters

¢ #define OAPI_LKEY_DecMainThrust 28

decrement thrust of main thrusters

¢ #define OAPI_LKEY_KillMainRetro 29

kill main and retro thrusters

¢ #define OAPI_LKEY_FullMainThrust 30

temporary full main thrust

e #define OAPI_LKEY_FullRetroThrust 31

temporary full retro thrust

e #define OAPI_LKEY_IncHoverThrust 32

increment thrust of hover thrusters

e #define OAPI_LKEY_DecHoverThrust 33

decrement thrust of hover thrusters

e #define OAPI_LKEY_RCSEnable 34

enable/disable RCS (reaction control system)

¢ #define OAPI_LKEY_RCSMode 35
toggle linear/rotational RCS mode

¢ #define OAPI_LKEY_RCSPitchUp 36
rotational RCS: pitch up

¢ #define OAPI_LKEY_ RCSPitchDown 37

rotational RCS: pitch down

* #define OAPI_LKEY_RCSYawLeft 38
rotational RCS: yaw left

* #define OAPI_LKEY_RCSYawRight 39
rotational RCS: yaw right

¢ #define OAPI_LKEY_RCSBankLeft 40
rotational RCS: bank left

o #define OAPI_LKEY_RCSBankRight 41
rotational RCS: bank right

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

540

* #define OAPI_LKEY_RCSUp 42

linear RCS: accelerate up (+y)

* #define OAPI_LKEY_RCSDown 43

linear RCS: accelerate down (-y)

e #define OAPI_LKEY_RCSLeft 44

linear RCS: accelerate left (-x)

* #define OAPI_LKEY_RCSRight 45

linear RCS: accelerate right (+x)

¢ #define OAPI_LKEY_RCSForward 46

linear RCS: accelerate forward (+z)

¢ #define OAPI_LKEY_RCSBack 47
linear RCS: accelerate backward (-z)

¢ #define OAPI_LKEY_LPRCSPitchUp 48
rotational RCS: pitch up 10%

e #define OAPI_LKEY_LPRCSPitchDown 49
rotational RCS: pitch down 10%

* #define OAPI_LKEY_LPRCSYawLeft 50
rotational RCS: yaw left 10%

¢ #define OAPI_LKEY_LPRCSYawRight 51
rotational RCS: yaw right 10%

e #define OAPI_LKEY_LPRCSBankLeft 52
rotational RCS: bank left 10%

¢ #define OAPI_LKEY_LPRCSBankRight 53
rotational RCS: bank right 10%

e #define OAPI_LKEY_LPRCSUp 54
linear RCS: accelerate up 10% (+y)

e #define OAPI_LKEY_LPRCSDown 55
linear RCS: accelerate down 10% (-y)

o #define OAPI_LKEY_LPRCSLeft 56
linear RCS: accelerate left 10% (-x)

* #define OAPI_LKEY_LPRCSRight 57
linear RCS: accelerate right 10% (+x)

#define OAPI_LKEY_LPRCSForward 58

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

541

linear RCS: accelerate forward 10% (+z)

e #define OAPI_LKEY_LPRCSBack 59
linear RCS: accelerate backward 10% (-z)

* #define OAPI_LKEY_NMHoldAltitude 60

toggle navmode: hold altitude

¢ #define OAPI_LKEY_NMHLevel 61

toggle navmode: level with horizon

o #define OAPI_LKEY_NMPrograde 62

toggle navmode: prograde

o #define OAPI_LKEY_NMRetrograde 63

toggle navmode: retrograde

e #define OAPI_LKEY_NMNormal 64

toggle navmode: normal to orbital plane

e #define OAPI_LKEY_NMAntinormal 65

toggle navmode: antinormal to orbital plane

* #define OAPI_LKEY_NMKillrot 66

toggle navmode: kill rotation

¢ #define OAPI_LKEY_Undock 67

undock from docked vessel

¢ #define OAPI_LKEY_IncElevatorTrim 68

increment elevator trim setting

¢ #define OAPI_LKEY_DecElevatorTrim 69

decrement elevator trim setting

¢ #define OAPI_LKEY_WheelbrakeLeft 70
apply wheelbrake left

* #define OAPI_LKEY_WheelbrakeRight 71
apply wheelbrake right

e #define OAPI_LKEY_HUD 72
toggle HUD on/off

¢ #define OAPI_LKEY_HUDMode 73
switch through HUD modes

* #define OAPI_LKEY_HUDReference 74
query reference object for HUD display

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

542

* #define OAPI_LKEY_HUDTarget 75
query target object for HUD display

* #define OAPI_LKEY_HUDColour 76
switch through HUD colours

o #define OAPI_LKEY_IncSimSpeed 77

increase simulation speed x10

* #define OAPI_LKEY_DecSimSpeed 78

decrease simulation speed x0.1

¢ #define OAPI_LKEY_IncFOV 79

increment field of view

* #define OAPI_LKEY_DecFOV 80

decrement field of view

* #define OAPI_LKEY_StepIncFOV 81
increment field of view by 10 deg

* #define OAPI_LKEY_StepDecFOV 82
decrement field of view by 10 deg

e #define OAPI_LKEY_MainMenu 83

open main menu

* #define OAPI_LKEY_DIgHelp 84
open help dialog

* #define OAPI_LKEY_DIgCamera 85

open camera dialog

¢ #define OAPI_LKEY_DIgSimspeed 86

open simulation speed dialog

* #define OAPI_LKEY_DIgCustomCmd 87

open custom command dialog

* #define OAPI_LKEY_DlgVisHelper 88

open visual helper dialog

* #define OAPI_LKEY_DIlgRecorder 89
open flight recorder dialog

* #define OAPI_LKEY_DIgInfo 90

open object info dialog

¢ #define OAPI_LKEY_DIgMap 91

open map dialog

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

543

* #define OAPI_LKEY_DIgNavaid 92

open nav transmitter list

o #define OAPI_LKEY_ToggleInfo 93
toggle on-screen info block on/off

o #define OAPI_LKEY_ToggleFPS 94
toggle frame rate display on/off

* #define OAPI_LKEY_ToggleCamlInternal 95

switch between cockpit and external camera

* #define OAPI_LKEY_ToggleTrackMode 96

switch between track camera modes

* #define OAPI_LKEY_TogglePanelMode 97

switch between cockpit modes

* #define OAPI_LKEY_TogglePlanetarium 98
toggle celestial marker display on/off

* #define OAPI_LKEY_ToggleRecPlay 99
toggle flight recorder/playback on/off

¢ #define OAPI_LKEY_Pause 100

toggle simulation pause on/off

e #define OAPI_LKEY_Quicksave 101

quick-save current simulation state

¢ #define OAPI_LKEY_Quit 102

quit simulation session

* #define OAPI_LKEY_DlgSelectVessel 103

open vessel selection dialog

e #define OAPI_LKEY_SelectPrevVessel 104

switch focus to previous vessel

* #define LKEY_COUNT 105

number of logical key definitions

Typedefs

* typedef void *x OBJHANDLE

¢ typedef void * VISHANDLE

¢ typedef void *x MESHHANDLE

* typedef int *« DEVMESHHANDLE

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 544

typedef void * SURFHANDLE

typedef void * PANELHANDLE

typedef void * FILEHANDLE

typedef void x INTERPRETERHANDLE

typedef void * THRUSTER_HANDLE

typedef void * THGROUP_HANDLE

typedef void * PROPELLANT_HANDLE

typedef void x PSTREAM_HANDLE

typedef void x DOCKHANDLE

typedef void * ATTACHMENTHANDLE

typedef void * AIRFOILHANDLE

typedef void x CTRLSURFHANDLE

typedef void x NAVHANDLE

typedef void * ANIMATIONCOMPONENT_HANDLE
typedef void * LAUNCHPADITEM_HANDLE

typedef void * NOTEHANDLE

typedef bool(x Listentry_clbk)(char ¥name, DWORD idx, DWORD flag, void susrdata)

Callback function for list entry selections.

typedef double(x LiftCoeffFunc)(double aoa)

typedef void(x AirfoilCoeffFunc)(double aoa, double M, double Re, double *cl, double *cm, dou-
ble xcd)

typedef void(x AirfoilCoeffFuncEx)(VESSEL xv, double aoa, double M, double Re, void *context,
double *cl, double *cm, double *xcd)

typedef int(+ KeyFunc)(const char xkeybuf)

typedef void(x* LoadMeshClbkFunc)(MESHHANDLE hMesh, bool firstload)

Callback function used by oapiLoadMeshGlobal(const charx,LoadMeshClbkFunc).

typedef void(* CustomFunc)(void *context)

Enumerations

enum FileAccessMode { FILE_IN, FILE_OUT, FILE_APP }
enum PathRoot {

ROOT, CONFIG, SCENARIOS, TEXTURES,

TEXTURES2, MESHES, MODULES }
enum ENGINETYPE { ENGINE_MAIN, ENGINE_RETRO, ENGINE_HOVER, ENGINE_-
ATTITUDE }

Thruster group identifiers (obsolete).

enum EXHAUSTTYPE { EXHAUST_MAIN, EXHAUST_RETRO, EXHAUST_HOVER,
EXHAUST_CUSTOM }

enum THGROUP_TYPE {

THGROUP_MAIN, THGROUP_RETRO, THGROUP_HOVER, THGROUP_ATT_PITCHUP,

THGROUP_ATT_PITCHDOWN, THGROUP_ATT_YAWLEFT, THGROUP_ATT_YAWRIGHT,
THGROUP_ATT_BANKLEFT,

THGROUP_ATT_BANKRIGHT, THGROUP_ATT_RIGHT, THGROUP_ATT_LEFT,
THGROUP_ATT_UP,
THGROUP_ATT_DOWN, THGROUP_ATT_FORWARD, THGROUP_ATT_BACK,

THGROUP_USER = 0x40 }

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 545

Thruster group types.

e enum ATTITUDEMODE { ATTMODE_DISABLED, ATTMODE_ROT, ATTMODE_LIN }
* enum AIRFOIL_ORIENTATION { LIFT_VERTICAL, LIFT_HORIZONTAL }

Lift vector orientation for airfoils.

* enum AIRCTRL_TYPE {
AIRCTRL_ELEVATOR, AIRCTRL_RUDDER, AIRCTRL_AILERON, AIRCTRL_FLAP,
AIRCTRL_ELEVATORTRIM, AIRCTRL_RUDDERTRIM }

Control surfaces provide attitude and drag control during atmospheric flight.

e enum FontStyle { FONT_NORMAL = 0, FONT_BOLD = 1, FONT_ITALIC = 2, FONT_-
UNDERLINE =4 }

Functions

* OAPIFUNC int oapiGetOrbiterVersion ()

Returns the version number of the Orbiter core system.

* int oapiGetModuleVersion ()

Returns the API version number against which the module was linked.

* OAPIFUNC HINSTANCE oapiGetOrbiterInstance ()

Returns the instance handle for the running Orbiter application.

* OAPIFUNC const char * oapiGetCmdLine ()

Returns a pointer to the command line with which Orbiter was invoked.

* OAPIFUNC void oapiGetViewportSize (DWORD xw, DWORD xh, DWORD xbpp=0)

Returns the dimensions of the render viewport.

* OAPIFUNC double oapiGetPanelScale ()

Returns the scaling factor for 2-D instrument panels.

* OAPIFUNC void oapiRegisterModule (oapi::Module smodule)

Register a module interface class instance.

* OAPIFUNC char * oapiDebugString ()

Returns a pointer to a string which will be displayed in the lower left corner of the viewport.

* OAPIFUNC OBJHANDLE oapiGetObjectByName (char *name)

Returns a handle for a named simulation object.

* OAPIFUNC OBJHANDLE oapiGetObjectByIndex (int index)

Returns a handle for an indexed simulation object.

* OAPIFUNC DWORD oapiGetObjectCount ()

Returns the number of objects currently present in the simulation.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 546

* OAPIFUNC int oapiGetObjectType (OBJHANDLE hObj)
Returns the type of an object identified by its handle.

* OAPIFUNC const void * oapiGetObjectParam (OBJHANDLE hObj, DWORD paramtype)

Returns an object-specific configuration parameter.

* OAPIFUNC OBJHANDLE oapiGetVesselByName (char *name)

Returns the handle of a vessel identified by its name.

* OAPIFUNC OBJHANDLE oapiGetVesselByIndex (int index)

Returns the handle of a vessel identified by its reference index.

* OAPIFUNC DWORD oapiGetVesselCount ()

Returns the number of vessels currently present in the simulation.

* OAPIFUNC bool oapilsVessel (OBJHANDLE hVessel)
Checks if the specified handle is a valid vessel handle.

* OAPIFUNC OBJHANDLE oapiGetGbodyByName (char *name)

Returns the handle of a celestial body (sun, planet or moon) identified by its name.

* OAPIFUNC OBJHANDLE oapiGetGbodyByIndex (int index)

Returns the handle of a celestial body (sun, planet or moon) indentified by its list index.

* OAPIFUNC DWORD oapiGetGbodyCount ()

Returns the number of celestial bodies (sun, planets and moons) currently present in the simulation.

* OAPIFUNC OBJHANDLE oapiGetBaseByName (OBJHANDLE hPlanet, char sname)

Returns the handle of a surface base on a given planet or moon.

* OAPIFUNC OBJHANDLE oapiGetBaseByIndex (OBJHANDLE hPlanet, int index)

Returns the handle of a surface base on a planet or moon given by its list index.

* OAPIFUNC DWORD oapiGetBaseCount (OBJHANDLE hPlanet)

Returns the number of surface bases defined for a given planet.

* OAPIFUNC void oapiGetObjectName (OBJHANDLE hObj, char *name, int n)

Returns the name of an object.

* OAPIFUNC OBJHANDLE oapiGetFocusObject ()

Returns the handle for the current focus object.

* OAPIFUNC OBJHANDLE oapiSetFocusObject (OBJHANDLE hVessel)

Switches the input focus to a different vessel object.

* OAPIFUNC VESSEL x oapiGetVessellnterface (OBJHANDLE hVessel)

Returns a VESSEL class instance for a vessel.

* OAPIFUNC VESSEL x oapiGetFocusInterface ()

Returns the VESSEL class instance for the current focus object.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 547

* OAPIFUNC CELBODY # oapiGetCelbodyInterface (OBJHANDLE hBody)
Returns a CELBODY interface instance for a celestial body, if available.

* OAPIFUNC OBJHANDLE oapiCreateVessel (const char xname, const char *classname, const VES-
SELSTATUS &status)

Creates a new vessel.

¢ OAPIFUNC OBJHANDLE oapiCreateVesselEx (const char sname, const char *classname, const
void xstatus)

Creates a new vessel via a VESSELSTATUSx (x >= 2) interface.

* OAPIFUNC bool oapiDelete Vessel (OBJHANDLE hVessel, OBJHANDLE hAlternativeCameraTar-
get=0)

Deletes an existing vessel.

* OAPIFUNC void oapiGetBarycentre (OBJHANDLE hObj, VECTOR3 xbary)

Returns the global position of the barycentre of a complete planetary system or a single planet-moons
system.

* OAPIFUNC double oapiGetSize (OBJHANDLE hObj)

Returns the size (mean radius) of an object.

* OAPIFUNC double oapiGetMass (OBJHANDLE hObyj)

Returns the mass of an object. For vessels, this is the total mass, including current fuel mass.

* OAPIFUNC void oapiGetGlobalPos (OBJHANDLE hObj, VECTOR3 xpos)

Returns the position of an object in the global reference frame.

* OAPIFUNC void oapiGetGlobal Vel (OBJHANDLE hObj, VECTOR3 xvel)

Returns the velocity of an object in the global reference frame.

* OAPIFUNC void oapiGetRelativePos (OBJHANDLE hObj, OBJHANDLE hRef, VECTOR3
*pOSs)

Returns the distance vector from hRef to hObj in the ecliptic reference frame.

* OAPIFUNC void oapiGetRelativeVel (OBJHANDLE hObj, OBJHANDLE hRef, VECTOR3 x*vel)

Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference frame.

* OAPIFUNC double oapiGetEmptyMass (OBJHANDLE hVessel)

Returns empty mass of a vessel, excluding fuel.

¢ OAPIFUNC void oapiSetEmptyMass (OBJHANDLE hVessel, double mass)

Set the empty mass of a vessel (excluding fuel).

* OAPIFUNC double oapiGetFuelMass (OBJHANDLE hVessel)

Returns current fuel mass of the first propellant resource of a vessel.

* OAPIFUNC double oapiGetMaxFuelMass (OBJHANDLE hVessel)

Returns maximum fuel capacity of the first propellant resource of a vessel.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

548

* OAPIFUNC PROPELLANT_HANDLE oapiGetPropellantHandle (OBJHANDLE
DWORD idx)

Returns an identifier of a vessel’s propellant resource.

¢ OAPIFUNC double oapiGetPropellantMass (PROPELLANT_HANDLE ph)

Returns the current fuel mass [kg] of a propellant resource.

* OAPIFUNC double oapiGetPropellantMaxMass (PROPELLANT_HANDLE ph)

Returns the maximum capacity [kg] of a propellant resource.

* OAPIFUNC DOCKHANDLE oapiGetDockHandle (OBJHANDLE hVessel, UINT n)

Returns a handle to a vessel docking port.

* OAPIFUNC OBJHANDLE oapiGetDockStatus (DOCKHANDLE dock)

Returns the handle of a vessel docked at a port.

* OAPIFUNC void oapiGetFocusGlobalPos (VECTOR3 xpos)

Returns the position of the current focus object in the global reference frame.

* OAPIFUNC void oapiGetFocusGlobal Vel (VECTOR3 xvel)

Returns the velocity of the current focus object in the global reference frame.

* OAPIFUNC void oapiGetFocusRelativePos (OBJHANDLE hRef, VECTOR3 xpos)

Returns the distance vector from hRef to the current focus object.

* OAPIFUNC void oapiGetFocusRelativeVel (OBJHANDLE hRef, VECTOR3 xvel)

Returns the velocity difference vector of the current focus object relative to hRef.

* OAPIFUNC BOOL oapiGetAltitude (OBJHANDLE hVessel, double xalt)

Returns the altitude of a vessel over a planetary surface.

* OAPIFUNC BOOL oapiGetPitch (OBJHANDLE hVessel, double *pitch)

Returns a vessel’s pitch angle w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetBank (OBJHANDLE hVessel, double «bank)

Returns a vessel’s bank angle w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetHeading (OBJHANDLE hVessel, double «heading)

Returns a vessel’s heading (against geometric north) calculated for the local horizon plane.

* OAPIFUNC BOOL oapiGetFocusAltitude (double *alt)

Returns the altitude of the current focus vessel over a planetary surface.

* OAPIFUNC BOOL oapiGetFocusPitch (double xpitch)

Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

* OAPIFUNC BOOL oapiGetFocusBank (double xbank)

Returns the bank angle of the current focus vessel w.r.t. the local horizon.

hVessel,

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 549

OAPIFUNC BOOL oapiGetFocusHeading (double xheading)

Returns the heading (against geometric north) of the current focus vessel calculated for the local horizon
plane.

OAPIFUNC BOOL oapiGetAirspeed (OBJHANDLE hVessel, double *airspeed)

Returns a vessel’s airspeed w.r.t. the closest planet or moon.

OAPIFUNC BOOL oapiGetAirspeed Vector (OBJHANDLE hVessel, VECTOR3 xspeedvec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s frame of reference.

OAPIFUNC BOOL oapiGetShipAirspeed Vector (OBJHANDLE hVessel, VECTOR3 xspeedvec)

Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the vessel’s local frame of reference.

OAPIFUNC BOOL oapiGetFocusAirspeed (double *airspeed)

Returns the current focus vessel’s airspeed w.r.t. the closest planet or moon.

OAPIFUNC BOOL oapiGetFocusAirspeed Vector (VECTOR3 xspeedvec)

Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in the local horizon’s
frame of reference.

OAPIFUNC BOOL oapiGetFocusShipAirspeed Vector (VECTOR3 xspeedvec)

Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the vessel’s local frame of
reference.

OAPIFUNC BOOL oapiGetEquPos (OBJHANDLE hVessel, double xlongitude, double xlatitude,
double xradius)

Returns a vessel’s spherical equatorial coordinates (longitude, latitude and radius) with respect to the
closest planet or moon.

OAPIFUNC BOOL oapiGetFocusEquPos (double xlongitude, double xlatitude, double *radius)

Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

OAPIFUNC void oapiGetAtm (OBJHANDLE hVessel, ATMPARAM xprm, OBJHANDLE
xhAtmRef=0)

Returns the atmospheric parameters at the current vessel position.

OAPIFUNC void oapiGetEngineStatus (OBJHANDLE hVessel, ENGINESTATUS xes)

Retrieve the status of main, retro and hover thrusters for a vessel.

OAPIFUNC void oapiGetFocusEngineStatus (ENGINESTATUS xes)

Retrieve the engine status for the focus vessel.

OAPIFUNC void oapiSetEngineLevel (OBJHANDLE hVessel, ENGINETYPE engine, double
level)

Engage the specified engines.

OAPIFUNC int oapiGetAttitudeMode (OBJHANDLE hVessel)

Returns a vessel’s current attitude thruster mode.

OAPIFUNC int oapiToggleAttitudeMode (OBJHANDLE hVessel)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 550

Flip a vessel’s attitude thruster mode between rotational and linear.

* OAPIFUNC bool oapiSetAttitudeMode (OBJHANDLE hVessel, int mode)

Set a vessel’s attitude thruster mode.

* OAPIFUNC int oapiGetFocusAttitudeMode ()

Returns the current focus vessel’s attitude thruster mode (rotational or linear).

* OAPIFUNC int oapiToggleFocusAttitudeMode ()

Flip the current focus vessel’s attitude thruster mode between rotational and linear.

* OAPIFUNC bool oapiSetFocusAttitudeMode (int mode)

Set the current focus vessel’s attitude thruster mode.

* OAPIFUNC void oapiGetRotationMatrix (OBJHANDLE hObj, MATRIX3 xmat)

Returns the current rotation matrix of an object.

* OAPIFUNC void oapiGlobalToLocal (OBJHANDLE hObj, const VECTOR3 xglob, VECTOR3
*loc)

Maps a point from the global frame to a local object frame.
* OAPIFUNC void oapiLocalToGlobal (OBJHANDLE hObj, const VECTOR3 xloc, VECTOR3
xglob)
Maps a point from a local object frame to the global frame.

* OAPIFUNC void oapiEquToLocal (OBJHANDLE hObj, double Ing, double lat, double rad, VEC-
TOR3 xloc)

Returns the cartesian position in the local object frame of a point given in equatorial coordinates.

* OAPIFUNC void oapil.ocalToEqu (OBJHANDLE hObj, const VECTOR3 &loc, double *Ing, dou-
ble xlat, double *rad)

Returns the equatorial coordinates of a point given in the local frame of an object.

* OAPIFUNC void oapiEquToGlobal (OBJHANDLE hObj, double Ing, double lat, double rad, VEC-
TOR3 xglob)

Returns the global cartesian position of a point given in equatorial coordinates of an object.

* OAPIFUNC void oapiGlobalToEqu (OBJHANDLE hObj, const VECTOR3 &glob, double *Ing,
double «lat, double *rad)

Returns the equatorial coordinates with respect to an object of a point given in the global reference frame.

* OAPIFUNC double oapiOrthodome (double Ing1, double latl, double Ing2, double lat2)

Returns the angular distance of two points on a sphere.

* OAPIFUNC SURFHANDLE oapiRegisterExhaustTexture (char xname)

Request a custom texture for vessel exhaust rendering.

* OAPIFUNC SURFHANDLE oapiRegisterReentryTexture (char *xname)

Request a custom texture for vessel reentry flame rendering.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 551

¢ OAPIFUNC SURFHANDLE oapiRegisterParticleTexture (char xname)
¢ OAPIFUNC void oapiSetShowGrapplePoints (bool show)

¢ OAPIFUNC bool oapiGetShowGrapplePoints ()

* OAPIFUNC double oapiGetlnducedDrag (double cl, double A, double e)

Aerodynamics helper function.

* OAPIFUNC double oapiGetWaveDrag (double M, double M1, double M2, double M3, double
cmax)

Aerodynamics helper function.

* OAPIFUNC bool oapiCameralnternal ()

Returns flag to indicate internal/external camera mode.

* OAPIFUNC int oapiCameraMode ()

Returns the current camera view mode.

* OAPIFUNC int oapiCockpitMode ()

Returns the current cockpit display mode.

* OAPIFUNC OBJHANDLE oapiCameraTarget ()

Returns a handle to the current camera target.

* OAPIFUNC OBJHANDLE oapiCameraProxyGbody ()

Returns celestial body whose surface is closest to the camera.

* OAPIFUNC void oapiCameraGlobalPos (VECTOR3 xgpos)

Returns current camera position in global coordinates.

* OAPIFUNC void oapiCameraGlobalDir (VECTOR3 x*gdir)

Returns current camera direction in global coordinates.

¢ OAPIFUNC void oapiCameraRotationMatrix (MATRIX3 *«rmat)
* OAPIFUNC double oapiCameraTargetDist ()

Returns the distance between the camera and its target [m].

¢ OAPIFUNC double oapiCameraAzimuth ()

Returns the current camera azimuth angle with respect to the target.

* OAPIFUNC double oapiCameraPolar ()

Returns the current camera polar angle with respect to the target.

* OAPIFUNC double oapiCameraAperture ()

Returns the current camera aperture (the field of view) in rad.

* OAPIFUNC void oapiCameraSetAperture (double aperture)

Change the camera aperture (field of view).

* OAPIFUNC void oapiCameraScaleDist (double dscale)

Moves the camera closer to the target or further away.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 552

* OAPIFUNC void oapiCameraRotAzimuth (double dazimuth)

Rotate the camera around the target (azimuth angle).

* OAPIFUNC void oapiCameraRotPolar (double dpolar)

Rotate the camera around the target (polar angle).

* OAPIFUNC void oapiCameraSetCockpitDir (double polar, double azimuth, bool transition=false)

Set the camera direction in cockpit mode.

* OAPIFUNC void oapiCameraAttach (OBJHANDLE hObj, int mode)

Attach the camera to a new target, or switch between internal and external camera mode.

¢ OAPIFUNC double oapiGetPlanetPeriod (OBJHANDLE hPlanet)

Returns the rotation period (the length of a siderial day) of a planet.

* OAPIFUNC double oapiGetPlanetObliquity (OBJHANDLE hPlanet)

Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis and the ecliptic
zenith).

* OAPIFUNC double oapiGetPlanetTheta (OBJHANDLE hPlanet)

Returns the longitude of the ascending node.

* OAPIFUNC void oapiGetPlanetObliquityMatrix (OBJHANDLE hPlanet, MATRIX3 xmat)

Returns a rotation matrix which performs the transformation from the planet’s tilted coordinates into global
coordinates.

* OAPIFUNC double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)

Returns the current rotation angle of the planet around its axis.

* OAPIFUNC bool oapiPlanetHasAtmosphere (OBJHANDLE hPlanet)

Test for existence of planetary atmosphere.

* OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double rad, ATMPARAM
*prm)

Returns atmospheric parameters as a function of distance from the planet centre.

* OAPIFUNC void oapiGetPlanetAtmParams (OBJHANDLE hPlanet, double alt, double Ing, double
lat, ATMPARAM xprm)

Returns atmospheric parameters of a planet as a function of altitude and geographic position.

* OAPIFUNC const ATMCONST x* oapiGetPlanetAtmConstants (OBJHANDLE hPlanet)

Returns atmospheric constants for a planet.

* OAPIFUNC VECTOR3 oapiGetGroundVector (OBJHANDLE hPlanet, double Ing, double lat, int
frame=2)

Returns the velocity vector of a surface point.

* OAPIFUNC VECTOR3 oapiGetWindVector (OBJHANDLE hPlanet, double Ing, double lat, double
alt, int frame=0)

Returns the wind velocity at a given position in a planet’s atmosphere.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 553

* OAPIFUNC DWORD oapiGetPlanetJCoeffCount (OBJHANDLE hPlanet)

Returns the number of perturbation coefficients defined for a planet.

* OAPIFUNC double oapiGetPlanet]Coeff (OBJHANDLE hPlanet, DWORD n)

Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

* OAPIFUNC OBJHANDLE oapiGetBasePlanet (OBJHANDLE hBase)

Returns a handle for the planet/moon the given base is located on.

¢ OAPIFUNC void oapiGetBaseEquPos (OBJHANDLE hBase, double *Ing, double xlat, double
xrad=0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a surface base.

* OAPIFUNC DWORD oapiGetBasePadCount (OBJHANDLE hBase)
Returns the number of VTOL landing pads owned by the base.

* OAPIFUNC bool oapiGetBasePadEquPos (OBJHANDLE hBase, DWORD pad, double *Ing, double
«lat, double *rad=0)

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a VTOL landing pad.

* OAPIFUNC bool oapiGetBasePadStatus (OBJHANDLE hBase, DWORD pad, int xstatus)
Returns the status of a VTOL landing pad (free, occupied or cleared).

* OAPIFUNC NAVHANDLE oapiGetBasePadNav (OBJHANDLE hBase, DWORD pad)
Returns a handle to the ILS transmitter of a VIOL landing pad, if available.

* OAPIFUNC double oapiGetSimTime ()

Retrieve simulation time (in seconds) since simulation start.

* OAPIFUNC double oapiGetSimStep ()

Retrieve length of last simulation time step (from previous to current frame) in seconds.

* OAPIFUNC double oapiGetSysTime ()

Retrieve system (real) time since simulation start.

* OAPIFUNC double oapiGetSysStep ()

Retrieve length of last system time step in seconds.

* OAPIFUNC double oapiGetSimMJD ()

Retrieve absolute time measure (Modified Julian Date) for current simulation state.

* OAPIFUNC double oapiGetSysMID ()

Retrieve the current computer system time in Modified Julian Date (MJD) format.

* OAPIFUNC bool oapiSetSimMID (double mjd, int pmode=0)

Set the current simulation time. The simulation session performs a jump to the new time.

* OAPIFUNC double oapiTime2MJD (double simt)

Convert a simulation up time value into a Modified Julian Date.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference

554

* OAPIFUNC double oapiGetTimeAcceleration ()

Returns simulation time acceleration factor.

* OAPIFUNC void oapiSetTimeAcceleration (double warp)

Set the simulation time acceleration factor.

* OAPIFUNC double oapiGetFrameRate ()

Returns current simulation frame rate (frames/sec).

* OAPIFUNC bool oapiGetPause ()

Returns the current simulation pause state.

* OAPIFUNC void oapiSetPause (bool pause)

Sets the simulation pause state.

* OAPIFUNC void oapiGetNavPos (NAVHANDLE hNav, VECTOR3 xgpos)

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric ecliptic).

* OAPIFUNC DWORD oapiGetNavChannel (NAVHANDLE hNav)

Returns the channel number of a NAV transmitter.

* OAPIFUNC float oapiGetNavFreq (NAVHANDLE hNav)

Returns the frequency of a NAV transmitter.

* OAPIFUNC double oapiGetNavSignal (NAVHANDLE hNav, const VECTOR3 &gpos)

Returns the signal strength of a transmitter at a given position.

* OAPIFUNC float oapiGetNavRange (NAVHANDLE hNav)

Returns the range of a NAV transmitter.

* OAPIFUNC DWORD oapiGetNavType (NAVHANDLE hNav)
Returns the type id of a NAV transmitter.

* OAPIFUNC int oapiGetNavData (NAVHANDLE hNav, NAVDATA xdata)

Returns information about a NAV transmitter.

* OAPIFUNC int oapiGetNavDescr (NAVHANDLE hNav, char *«descr, int maxlen)

Returns a descriptive string for a NAV transmitter.

* OAPIFUNC bool oapiNavInRange (NAVHANDLE hNav, const VECTOR3 &gpos)

Determines whether a given global coordinate is within the range of a NAV transmitter.

* OAPIFUNC INTERPRETERHANDLE oapiCreatelnterpreter ()

Returns a handle to a new interpreter instance.

* OAPIFUNC int oapiDellnterpreter INTERPRETERHANDLE hlinterp)

Delete an interpreter instance.

* OAPIFUNC bool oapiExecScriptCmd (INTERPRETERHANDLE hlnterp, const char xcmd)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 555

Executes a script command in an interpreter instance.

* OAPIFUNC bool oapiAsyncScriptCmd (INTERPRETERHANDLE hlnterp, const char *xcmd)

Passes a command to an interpreter instance for execution.

* OAPIFUNC lua_State * oapiGetLua INTERPRETERHANDLE hlnterp)
* OAPIFUNC VISHANDLE =* oapiObjectVisualPtr (OBJHANDLE hObject)

Returns a pointer storing the objects visual handle.

* OAPIFUNC MESHHANDLE oapil.oadMesh (const char sfname)

Loads a mesh from file and returns a handle to it.

* OAPIFUNC const MESHHANDLE oapilLoadMeshGlobal (const char «fname)

Retrieves a mesh handle from the global mesh manager:

* OAPIFUNC const MESHHANDLE oapil.oadMeshGlobal (const char «fname, LoadMeshClbkFunc
fClbk)

Retrieves a mesh handle from the global mesh manager.

* OAPIFUNC MESHHANDLE oapiCreateMesh (DWORD ngrp, MESHGROUP x*grp)

Creates a new mesh from a list of mesh group definitions.

¢ OAPIFUNC void oapiDeleteMesh (MESHHANDLE hMesh)

Removes a mesh from memory.

* OAPIFUNC DWORD oapiMeshGroupCount (MESHHANDLE hMesh)

Returns the number of mesh groups defined in a mesh.

* OAPIFUNC MESHGROUP # oapiMeshGroup (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to the group specification of a mesh group.

* OAPIFUNC MESHGROUP * oapiMeshGroup (DEVMESHHANDLE hMesh, DWORD idx)

¢ OAPIFUNC MESHGROUPEX * oapiMeshGroupEx (MESHHANDLE hMesh, DWORD idx)

* OAPIFUNC DWORD oapiAddMeshGroup (MESHHANDLE hMesh, MESHGROUP xgrp)

* OAPIFUNC bool oapiAddMeshGroupBlock (MESHHANDLE hMesh, DWORD grpidx, const
NTVERTEX #vtx, DWORD nvtx, const WORD xidx, DWORD nidx)

* OAPIFUNC int oapiEditMeshGroup (MESHHANDLE hMesh, DWORD grpidx, GROUPEDIT-
SPEC x*ges)

Modify mesh group data.

¢ OAPIFUNC int oapiEditMeshGroup (DEVMESHHANDLE hMesh, DWORD grpidx, GROU-
PEDITSPEC xges)
¢ OAPIFUNC DWORD oapiMeshTextureCount (MESHHANDLE hMesh)

Returns the number of textures associated with a mesh.

* OAPIFUNC SURFHANDLE oapiGetTextureHandle (MESHHANDLE hMesh, DWORD texidx)

Retrieve a surface handle for a mesh texture.

* OAPIFUNC SURFHANDLE oapiloadTexture (const char *fname, bool dynamic=false)

Load a texture from a file.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 556

* OAPIFUNC void oapiReleaseTexture (SURFHANDLE hTex)

Release a texture.

* OAPIFUNC bool oapiSetTexture (MESHHANDLE hMesh, DWORD texidx, SURFHANDLE tex)

Replace a mesh texture.

¢ OAPIFUNC bool oapiSetTexture (DEVMESHHANDLE hMesh, DWORD texidx, SURFHANDLE
tex)
* OAPIFUNC DWORD oapiMeshMaterial Count (MESHHANDLE hMesh)

Returns the number of materials defined in the mesh.

* OAPIFUNC MATERIAL * oapiMeshMaterial (MESHHANDLE hMesh, DWORD idx)

Returns a pointer to a material specification in the material list of the mesh.

* OAPIFUNC DWORD oapiAddMaterial MESHHANDLE hMesh, MATERIAL +mat)

Add a material definition to a mesh.

* OAPIFUNC bool oapiDeleteMaterial MESHHANDLE hMesh, DWORD idx)

Delete a material definition from the mesh.

* OAPIFUNC int oapiSetMaterial (DEVMESHHANDLE hMesh, DWORD matidx, const MATE-
RIAL xmat)

Reset the properties of a mesh material.

* OAPIFUNC bool oapiSetMeshProperty (MESHHANDLE hMesh, DWORD property, DWORD
value)

Set custom properties for a mesh.

* OAPIFUNC bool oapiSetMeshProperty (DEVMESHHANDLE hMesh, DWORD property,
DWORD value)

Set custom properties for a device-specific mesh.

* OAPIFUNC void oapiParticleSetLevelRef (PSTREAM_HANDLE ph, double x1vl)

Reset the reference pointer used by the particle stream to calculate the intensity (opacity) of the generated
particles.

* OAPIFUNC bool oapiSetHUDMode (int mode)
Set HUD (head up display) mode.

* OAPIFUNC bool oapiSetHUDMode (int mode, const HUDPARAM #prm)
Set HUD (head up display) mode with mode-specific parameters.

¢ OAPIFUNC int oapiGetHUDMode ()
Query current HUD (head up display) mode.

* OAPIFUNC int oapiGetHUDMode (HUDPARAM sxprm)

Query current HUD mode and mode parameters.

* OAPIFUNC void oapiToggleHUDColour ()

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 557

Switch the HUD display to a different colour.

¢ OAPIFUNC void oapilncHUDIntensity ()
Increase the brightness of the HUD display.

* OAPIFUNC void oapiDecHUDIntensity ()
Decrease the brightness of the HUD display.

* OAPIFUNC void oapiRenderHUD (MESHHANDLE hMesh, SURFHANDLE xhTex)

Render custom HUD elements.

* OAPIFUNC void oapiOpenMFD (int mode, int mfd)
Set an MFD (multifunctional display) to a specific mode.

* OAPIFUNC void oapiToggleMFD_on (int mfd)
Switches an MFD on or off.

* OAPIFUNC int oapiGetMFDMode (int mfd)
Get the current mode of the specified MFD.

¢ OAPIFUNC int oapiBroadcastMFDMessage (int mode, int msg, void *data)
* OAPIFUNC int oapiSendMFDKey (int mfd, DWORD key)

Sends a keystroke to an MFD.

* OAPIFUNC void oapiRefreshMFDButtons (int mfd, OBJHANDLE hVessel=0)
Sends a clbkMFDMode call to the current focus vessel to allow it to dynamically update its button labels.

* OAPIFUNC bool oapiProcessMFDButton (int mfd, int bt, int event)

Requests a default action as a result of a MFD button event.

¢ OAPIFUNC const char * oapiMFDButtonLabel (int mfd, int bt)
Retrieves a default label for an MFD button.

* OAPIFUNC void oapiRegisterMFD (int mfd, const MFDSPEC &spec)

Registers an MFD position for a custom panel.

* OAPIFUNC void oapiRegisterMFD (int mfd, const EXTMFDSPEC x*spec)

Registers an MFD position for a custom panel or virtual cockpit. This version has an extended parameter
list.

¢ OAPIFUNC void oapiRegisterExternMFD (ExternMFD xemfd, const MFDSPEC &spec)

* OAPIFUNC bool oapiUnregisterExternMFD (ExternMFD xemfd)

* OAPIFUNC void oapiRegisterPanelBackground (HBITMAP hBmp, DWORD flag=PANEL _-
ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM, DWORD ck=(DWORD)-1)

Register the background bitmap for a custom panel.

e OAPIFUNC void oapiRegisterPanelArea (int id, const RECT &pos, int draw_event=PANEL_-
REDRAW_NEVER, int mouse_event=PANEL_MOUSE_IGNORE, int bkmode=PANEL_MAP_-
NONE)

Defines a rectangular area within a panel to receive mouse or redraw notifications.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 558

* OAPIFUNC void oapiSetPanelNeighbours (int left, int right, int top, int bottom)

Defines the neighbour panels of the current panels. These are the panels the user can switch to via Ctrl-
Arrow keys.

* OAPIFUNC void oapiTriggerPanelRedrawArea (int panel_id, int area_id)

Triggers a redraw notification for a panel area.

* OAPIFUNC void oapiTriggerRedrawArea (int panel_id, int vc_id, int area_id)

Triggers a redraw notification to either a 2D panel or a virtual cockpit.

* OAPIFUNC bool oapiBltPanelAreaBackground (int area_id, SURFHANDLE surf)

Copies the stored background of a panel area into the provided surface.

* OAPIFUNC void oapiSetDefNavDisplay (int mode)

Defines how the navigation mode buttons will be displayed in a default cockpit view.

* OAPIFUNC void oapiSetDefRCSDisplay (int mode)

Enable or disable the display of the reaction control system indicators/controls in default cockpit view.

* OAPIFUNC int oapiSwitchPanel (int direction)

Switch to a neighbour instrument panel in 2-D panel cockpit mode.

* OAPIFUNC int oapiSetPanel (int panel_id)

Switch to a different instrument panel in 2-D panel cockpit mode.

¢ OAPIFUNC oapi::Sketchpad * oapiGetSketchpad (SURFHANDLE surf)

Obtain a drawing context for a surface.

* OAPIFUNC void oapiReleaseSketchpad (oapi::Sketchpad *skp)

Release a drawing device context instance.

* OAPIFUNC oapi::Font * oapiCreateFont (int height, bool prop, char xface, FontStyle style=FONT_-
NORMAL)

Creates a font resource for drawing text into surfaces.

* OAPIFUNC oapi::Font * oapiCreateFont (int height, bool prop, const char xface, FontStyle style, int
orientation)

Creates a font resource for drawing text into surfaces.

* OAPIFUNC void oapiReleaseFont (oapi::Font *font)

Release a font resource.

* OAPIFUNC oapi::Pen * oapiCreatePen (int style, int width, DWORD col)

Creates a pen resource for drawing lines and shape outlines.

* OAPIFUNC void oapiReleasePen (oapi::Pen *pen)

Release a pen resource.

* OAPIFUNC oapi::Brush * oapiCreateBrush (DWORD col)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 559

Creates a brush resource for filling shapes.

* OAPIFUNC void oapiReleaseBrush (oapi::Brush *brush)

Release a brush resource.

* OAPIFUNC HDC oapiGetDC (SURFHANDLE surf)
Obtain a Windows device context handle (HDC) for a surface.

* OAPIFUNC void oapiReleaseDC (SURFHANDLE surf, HDC hDC)

Release a GDI drawing device context handle.

* OAPIFUNC SURFHANDLE oapiCreateSurface (int width, int height)

Create a surface of the specified dimensions.

* OAPIFUNC SURFHANDLE oapiCreateSurface (HBITMAP hBmp, bool release_bmp=true)

Create a surface from a bitmap. Bitmap surfaces are typically used for blitting operations during instrument
panel redraws.

¢ OAPIFUNC SURFHANDLE oapiCreateTextureSurface (int width, int height)

Create a surface that can be used as a texture for a 3-D object.

* OAPIFUNC void oapiDestroySurface (SURFHANDLE surf)

Destroy a surface previously created with oapiCreateSurface.

¢ OAPIFUNC void oapiClearSurface (SURFHANDLE surf, DWORD col=0)
* OAPIFUNC void oapiSetSurfaceColourKey (SURFHANDLE surf, DWORD ck)

Define a colour key for a surface to allow transparent blitting.

* OAPIFUNC void oapiClearSurfaceColourKey (SURFHANDLE surf)

Clear a previously defined colour key.

¢ OAPIFUNC void oapiBlt (SURFHANDLE tgt, SURFHANDLE src, int tgtx, int tgty, int srcx, int
srcy, int w, int h, DWORD ck=SURF_NO_CK)

Copy a rectangular area from one surface to another.

* OAPIFUNC void oapiBlt (SURFHANDLE tgt, SURFHANDLE src, RECT xtgtr, RECT =xsrcr,
DWORD ck=SURF_NO_CK, DWORD rotate=SURF_NO_ROTATION)

Copy a scaled rectangular area from one surface to another.

¢ OAPIFUNC void oapiColourFill (SURFHANDLE tgt, DWORD fillcolor, int tgtx=0, int tgty=0, int
w=0, int h=0)

Fill an area of the target surface with a uniform colour.

* OAPIFUNC int oapiRegisterMFDMode (MFDMODESPECEX &spec)

Register a custom MFD mode.

* OAPIFUNC bool oapiUnregisterMFDMode (int mode)

Unregister a previously registered custom MFD mode.

* OAPIFUNC void oapiDisableMFDMode (int mode)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 560

Disable an MFD mode.

OAPIFUNC int oapiGetMFDModeSpecEx (char xname, MFDMODESPECEX sxspec=0)
Returns the mode identifier and spec for an MFD mode defined by its name.

OAPIFUNC void oapiVCRegisterMFD (int mfd, const VCMFDSPEC x*spec)

Define a render target for rendering an MFD display in a virtual cockpit.

OAPIFUNC void oapiVCRegisterArea (int id, const RECT &ctgtrect, int draw_event, int mouse_-
event, int bkmode, SURFHANDLE tgt)

Define an active area in a virtual cockpit. Active areas can be repainted. This function is similar to oapiReg-
isterPanelArea.

OAPIFUNC void oapiVCRegisterArea (int id, int draw_event, int mouse_event)

Define an active area in a virtual cockpit. This version is used when no dynamic texture update is required
during redraw events.

OAPIFUNC void oapiVCSetAreaClickmode_Spherical (int id, const VECTOR3 &cnt, double rad)

Associate a spherical region in the virtual cockpit with a registered area to receive mouse events.

OAPIFUNC void oapiVCSetAreaClickmode_Quadrilateral (int id, const VECTOR3 &pl, const
VECTOR3 &p2, const VECTOR3 &p3, const VECTOR3 &p4)

Associate a quadrilateral region in the virtual cockpit with a registered area to receive mouse events.

OAPIFUNC void oapiVCSetNeighbours (int left, int right, int top, int bottom)

Defines the neighbouring virtual cockpit camera positions in relation to the current position. The user can
switch to neighbour positions with Ctrl-Arrow keys.

OAPIFUNC void oapiVCTriggerRedrawArea (int vc_id, int area_id)

Triggers a redraw notification for a virtual cockpit area.

OAPIFUNC void oapiVCRegisterHUD (const VCHUDSPEC x*spec)
Define a render target for the head-up display (HUD) in a virtual cockpit.

OAPIFUNC LAUNCHPADITEM_HANDLE oapiRegisterLaunchpadltem (Launchpadltem xitem,
LAUNCHPADITEM_HANDLE parent=0)

Register a new item in the parameter list of the "Extra" tab of the Orbiter Launchpad dialog.

OAPIFUNC bool oapiUnregisterLaunchpadltem (Launchpadltem xitem)

Unregister a previously registered entry in the "Extra" tab of the Orbiter Launchpad dialog.

OAPIFUNC LAUNCHPADITEM_HANDLE oapiFindLaunchpadltem (const char xname=0,
LAUNCHPADITEM_HANDLE parent=0)

Returns a handle for an existing entry in the Extra parameter list.

OAPIFUNC DWORD oapiRegisterCustomCmd (char *label, char *desc, CustomFunc func, void
*context)

Register a custom function. Custom functions can be accessed in Orbiter by pressing Ctrl-F4. A common
use for custom functions is opening plugin dialog boxes.

OAPIFUNC bool oapiUnregisterCustomCmd (int cmdld)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

94

Orbitersdk/include/OrbiterAPLh File Reference 561

Unregister a previously defined custom function.

OAPIFUNC HWND oapiOpenDialog (HINSTANCE hDLLInst, int resourceld, DLGPROC msg-
Proc, void *context=0)

Open a dialog box defined as a Windows resource.

OAPIFUNC HWND oapiOpenDialogEx (HINSTANCE hDLLlInst, int resourceld, DLGPROC msg-
Proc, DWORD flag=0, void *context=0)

Open a dialog box defined as a Windows resource. This version provides additional functionality compared
to oapiOpenDialog().

OAPIFUNC HWND oapiFindDialog (HINSTANCE hDLLInst, int resourceld)
Returns the window handle of an open dialog box, or NULL if the specified dialog box is not open.

OAPIFUNC void oapiCloseDialog (HWND hDlg)

Close a dialog box.

OAPIFUNC void * oapiGetDialogContext (HWND hDlg)

Retrieves the context pointer of a dialog box which has been defined during the call to oapiOpenDialog().

OAPIFUNC bool oapiRegisterWindow (HINSTANCE hDLLInst, HWND hWnd, DWORD flag=0)

OAPIFUNC bool oapiAddTitleButton (DWORD msgid, HBITMAP hBmp, DWORD flag)
Adds a custom button in the title bar of a dialog box.

OAPIFUNC DWORD oapiGetTitleButtonState (HWND hDIg, DWORD msgid)

OAPIFUNC bool oapiSetTitleButtonState (HWND hDIg, DWORD msgid, DWORD state)
OAPIFUNC BOOL oapiDefDialogProc (HWND hDlg, UINT uMsg, WPARAM wParam, LPARAM
IParam)

Default Orbiter dialog message handler.

OAPIFUNC bool oapiOpenHelp (HELPCONTEXT sxhcontext)
Opens the ingame help window on the specified help page.

OAPIFUNC bool oapiOpenLaunchpadHelp (HELPCONTEXT sxhcontext)

Opens a help window outside a simulation session, i.e. when the Launchpad dialog is displayed.

OAPIFUNC FILEHANDLE oapiOpenFile (const char xfname, FileAccessMode mode, PathRoot
root=ROO0OT)

Open a file for reading or writing.

OAPIFUNC void oapiCloseFile (FILEHANDLE file, FileAccessMode mode)

Close a file after reading or writing.

OAPIFUNC bool oapiSaveScenario (const char xfname, const char xdesc)

Writes the current simulation state to a scenario file.

OAPIFUNC void oapiWriteLine (FILEHANDLE file, char *line)

Writes a line to a file.

OAPIFUNC void oapiWriteLog (char *line)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 562

Writes a line to the Orbiter log file (orbiter.log) in the main orbiter directory.

* OAPIFUNC void oapiWriteScenario_string (FILEHANDLE scn, char *item, char #string)

Writes a string-valued item to a scenario file.

* OAPIFUNC void oapiWriteScenario_int (FILEHANDLE scn, char xitem, int 1)

Writes an integer-valued item to a scenario file.

* OAPIFUNC void oapiWriteScenario_float (FILEHANDLE scn, char xitem, double d)

Writes a floating point-valued item to a scenario file.

* OAPIFUNC void oapiWriteScenario_vec (FILEHANDLE scn, char xitem, const VECTOR3
&vec)

Writes a vector-valued item to a scenario file.

* OAPIFUNC bool oapiReadScenario_nextline (FILEHANDLE scn, char x&line)

Reads an item from a scenario file.

* OAPIFUNC bool oapiReadltem_string (FILEHANDLE f, char xitem, char *string)

Read the value of a tag from a configuration file.

* OAPIFUNC bool oapiReadltem_float (FILEHANDLE f, char *item, double &d)

Read the value of a tag from a configuration file.

* OAPIFUNC bool oapiReadltem_int (FILEHANDLE f, char xitem, int &i)

Read the value of a tag from a configuration file.

* OAPIFUNC bool oapiReadltem_bool (FILEHANDLE f, char xitem, bool &b)

Read the value of a tag from a configuration file.

* OAPIFUNC bool oapiReadltem_vec (FILEHANDLE f, char xitem, VECTOR3 &vec)

Read the value of a tag from a configuration file.

* OAPIFUNC void oapiWriteltem_string (FILEHANDLE f, char *item, char *string)

Write a tag and its value to a configuration file.

* OAPIFUNC void oapiWriteltem_float (FILEHANDLE f, char xitem, double d)

Write a tag and its value to a configuration file.

* OAPIFUNC void oapiWriteltem_int (FILEHANDLE f, char xitem, int 1)

Write a tag and its value to a configuration file.

* OAPIFUNC void oapiWriteltem_bool (FILEHANDLE f, char xitem, bool b)

Write a tag and its value to a configuration file.

* OAPIFUNC void oapiWriteltem_vec (FILEHANDLE f, char xitem, const VECTOR3 &vec)

Write a tag and its value to a configuration file.

* OAPIFUNC double oapiRand ()

Returns uniformly distributed pseudo-random number in the range [0..1].

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 563

* OAPIFUNC DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)

Returns a colour value adapted to the current screen colour depth for given red, green and blue components.

* OAPIFUNC void oapiOpenlnputBox (char xtitle, bool(xClbk)(void *, char *, void %), char «buf=0,
int vislen=20, void *usrdata=0)

Opens a modal input box requesting a string from the user.

¢ OAPIFUNC void oapiOpenInputBoxEx (const char xtitle, bool(xClbk_enter)(void *, char *, void
%), bool(xClbk_cancel)(void *, char *, void %), char xbuf=0, int vislen=20, void s*usrdata=0,
DWORD flags=0)

* OAPIFUNC NOTEHANDLE oapiCreate Annotation (bool exclusive, double size, const VECTOR3
&col)

Creates an annotation handle for displaying onscreen text during a simulation.

* OAPIFUNC bool oapiDelAnnotation (NOTEHANDLE hNote)

Deletes an annotation handle.

* OAPIFUNC void oapiAnnotationSetPos (NOTEHANDLE hNote, double x1, double y1, double x2,
double y2)

Resets the bounding box of the annotation display area.

* OAPIFUNC void oapiAnnotationSetSize (NOTEHANDLE hNote, double size)

Resets the font size of the annotation text.

* OAPIFUNC void oapiAnnotationSetColour (NOTEHANDLE hNote, const VECTOR3 &col)

Resets the font colour of the annotation text.

* OAPIFUNC void oapiAnnotationSetText NOTEHANDLE hNote, char *note)

Writes a new annotation to screen, or overwrites the previous text.

* OAPIFUNC OBJHANDLE oapiGetStationByName (char *name)

* OAPIFUNC OBJHANDLE oapiGetStationByIndex (int index)

* OAPIFUNC void oapiGetAtmPressureDensity (OBJHANDLE hVessel, double xpressure, double
xdensity)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current vessel posi-
tion.

* OAPIFUNC void oapiGetFocusAtmPressureDensity (double xpressure, double «density)

Returns the atmospheric pressure and density caused by a planetary atmosphere at the current focus vessel’s
position.

¢ OAPIFUNC DWORD oapiGetStationCount ()
* OAPIFUNC bool oapiAcceptDelayedKey (char key, double interval)
* OAPIFUNC int oapiRegisterMFDMode (MFDMODESPEC &spec)

Register a custom MFD mode.

* OAPIFUNC int oapiGetMFDModeSpec (char xname, MFDMODESPEC #xspec=0)
Returns the mode identifier and spec for an MFD mode defined by its name.

* VECTOR3 _V (double x, double y, double z)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 564

Vector composition.

¢ void veccpy (VECTOR3 &a, const VECTOR3 &b)

Vector copy.

e VECTORS3 operator+ (const VECTOR3 &a, const VECTOR3 &b)

Vector addition.

* VECTORS3 operator- (const VECTOR3 &a, const VECTOR3 &b)

Vector subtraction.

* VECTOR3 operator * (const VECTOR3 &a, const double f)

Multiplication of vector with scalar.

* VECTOR3 operator/ (const VECTOR3 &a, const double f)

Division of vector by a scalar.

* VECTOR3 & operator+= (VECTOR3 &a, const VECTOR3 &b)

Vector addition-assignment a += b.

* VECTOR3 & operator-= (VECTOR3 &a, const VECTOR3 &b)

Vector subtraction-assignment a -= b.

* VECTOR3 & operator *= (VECTOR3 &a, const double f)

Vector-scalar multiplication-assignment a = f.

¢ VECTORS3 & operator/= (VECTOR3 &a, const double f)

Vector-scalar division-assignment a /= f.

* VECTOR3 operator- (const VECTOR3 &a)

Vector unary minus -a.

¢ double dotp (const VECTOR3 &a, const VECTOR3 &b)

Scalar (inner, dot) product of two vectors.

e VECTORS3 crossp (const VECTOR3 &a, const VECTOR3 &b)

Vector (cross) product of two vectors.

* double length (const VECTOR3 &a)
Length (L2-norm) of a vector.

¢ double dist (const VECTOR3 &a, const VECTOR3 &b)

Distance between two points.

¢ void normalise (VECTOR3 &a)

Normalise a vector.

e VECTOR3 unit (const VECTOR3 &a)

Returns normalised vector.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.4 Orbitersdk/include/OrbiterAPLh File Reference 565

¢ MATRIX3 _M (double m11, double m12, double m13, double m21, double m22, double m23, dou-
ble m31, double m32, double m33)

Matrix composition.

* MATRIX3 identity ()

Returns the identity matrix.

* MATRIX3 outerp (const VECTOR3 &a, const VECTOR3 &b)

Outer product of two vectors.

e MATRIX3 operator+ (const MATRIX3 &A, double s)

Sum of matrix and scalar.

* MATRIX3 operator- (const MATRIX3 &A, double s)

Difference of matrix and scalar.

* MATRIX3 operator * (const MATRIX3 &A, double s)

Product of matrix and scalar.

* MATRIX3 operator/ (const MATRIX3 &A, double s)

Quotient of matrix and scalar.

* MATRIX3 & operator *= (MATRIX3 &A, double s)

Matrix-scalar product-assignment A x=s.

* MATRIX3 & operator/= (MATRIX3 &A, double s)

Matrix-scalar division-assignment A /= s.

¢ VECTOR3 mul (const MATRIX3 &A, const VECTOR3 &b)

Matrix-vector multiplication.

* VECTOR3 tmul (const MATRIX3 &A, const VECTOR3 &b)

Matrix transpose-vector multiplication.

¢ MATRIX3 mul (const MATRIX3 &A, const MATRIX3 &B)

Matrix-matrix multiplication.

¢ RECT _R (int left, int top, int right, int bottom)
¢ VECTOR3 POINTERTOREF (VECTOR3 xp)

Variables

e const double PI = 3.14159265358979323846
pi

e const double PI05 = 1.57079632679489661923
pi/2

* const double PI2 = 6.28318530717958647693
pix2

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

9.5 Orbitersdk/include/Vessel APLh File Reference 566

¢ const double RAD = PI/180.0

factor to map degrees to radians

¢ const double DEG = 180.0/PI1

factor to map radians to degrees

 const double CO =299792458.0
speed of light in vacuum [m/s]

* const double TAUA = 499.004783806
light time for 1 AU [s]

e const double AU = CO«xTAUA

astronomical unit (mean geocentric distance of the sun) [m]

¢ const double GGRAYV = 6.6725%¢-11

gravitational constant [m" 3 kg"-1 s"-2]

e const double G = 9.81

gravitational acceleration [m/s"2] at Earth mean radius

e const double ATMP = 101.4e3

atmospheric pressure [Pa] at Earth sea level

e const double ATMD = 1.293

atmospheric density [kg/m” 3] at Earth sea level
¢ const DWORD MAXTEX =1
e const UINT ALLDOCKS = (UINT)-1
9.5 Orbitersdk/include/VesselAPLh File Reference
9.5.1 Detailed Description

Contains the class interfaces for vessel objects (VESSEL, VESSEL2, VESSELS3).

Classes

e class VESSEL

Base class for objects of vessel type (spacecraft and similar).

e class VESSEL2
Callback extensions to the VESSEL class.

¢ class VESSEL3
Callback extensions to the VESSEL class.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

10 Orbiter API Example Documentation 567

Defines

¢ #define FRAME_ECL 0
* #define FRAME_EQU 1

10 Orbiter API Example Documentation

10.1 clbkLoadStateEx.cpp

Example of an overloaded VESSEL2::clbkLoadStateEx method.

1 class MyVessel: public VESSEL2 {

2 public:

3 c.

4 clbkLoadStateEx (FILEHANDLE scn, void =status);

5

6 };

7

8 void MyVessel::clbkLoadStateEx (FILEHANDLE scn, void xstatus)
9 {

10 char =*line;

11 int my_value;

12

13 while (oapiReadScenario_nextline (scn, line)) {

14 if (!strnicmp (line, "my_option", 9)) { // custom item
15 sscanf (line+9, "%d", &my_value);

16 } else if (...) { // more items

17 e

18 } else { // anything not recognised is passed on to Orbiter
19 ParseScenarioLineEx (line, vs);

20 }

21 }

22}

10.2 clbkPreStep.cpp
Example of an overloaded VESSEL?2::clbkPreStep method.

class MyVessel: public VESSEL2 {
public:

clbkPreStep (double simt, double simdt, double mid);

bi

O J oy U b W N

void MyVessel::clbkPreStep (double simt, double simdt, double mjd)
{

10 double F = mass x dv/simdt;

11 AddForce (_V(0,0,F), _V(0,0,0));

12 }

e}

10.3 clbkSetStateEx.cpp
Example of an overloaded VESSEL2::clbkSetStateEx method.

1 class MyVessel: public VESSEL2 {
2 public:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

11 VESSEL2.cpp 568

3 A

4 clbkSetStateEx (const void =*status);

5

6 };

7

8 void MyVessel::clbkSetStateEx (const void *status)
9 {

10 // specialised vessel initialisations
11 //

12

13 // default initialisation:

14 DefSetStateEx (status);

15 }

11 VESSEL2.cpp

Example for constructing and destroying an overloaded VESSEL2 (p.482) instance during the instance
initialisation of a vessel module.

1 class MyVessel: public VESSEL2 {

2 public:

3 MyVessel (OBJHANDLE hvessel, int flightmodel = 1);
4

5 };

6

7 MyVessel::MyVessel (OBJHANDLE hvessel, int flightmodel)
8 : VESSEL2 (hvessel, flightmodel)

9 {

10

11}

12

13 DLLCLBK VESSEL2 #xovcInit (OBJHANDLE hvessel, int flightmodel)
14 {

15 return new MyVessel (hvessel, flightmodel);

16 }

17

18 DLLCLBK void ovcExit (VESSEL2 «*vessel)

19 {

20 delete (MyVesselx)vessel;

21 }

12 Orbiter API Page Documentation

12.1 Planet Modules

Planet modules can be used to control the motion of a planet (or any other celestial body, such as a moon, the
sun, or an asteroid) within the solar system. This allows to implement sophisticated analytic ephemerides
solutions which take into account perturbations from other celestial objects.

Planets which are not controlled via a DLL module are updated directly by Orbiter. Depending on the
settings in the definition file, Orbiter either uses an unperturbed 2-body approximation, resulting in a conic
section trajectory (e.g. an ellipse), or uses a dynamic update procedure based on the gravitational forces
acting on the planet. Both methods have limitations: the 2- body approach ignores perturbations and is only
valid if no massive bodies other than the orbit reference object are nearby. The dynamic update accumulates
numerical errors over time, causing the orbits slowly to diverge from the correct trajectories.

By using a planet module, analytic perturbation solutions can be used which avoid the shortcomings of
the methods described above. Perturbation solutions typically describe the perturbed orbit of a planet by

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.1 Planet Modules 569

expressing the state vectors as a trigonometric series. These series are valid over a limited period of time,
after which they start to diverge. Examples of perturbation solutions used in Orbiter are the VSOP87
solution for the 8 major planets and the sun, or the ELP2000 solution for the moon.

Planet modules have one additional function: They can be used to define some atmospheric parameters,
such as temperature, pressure and density as a function of altitude. Additional functions may be added to
the planet module interface in the future.

12.1.1 First Steps:

To start on your planet module, you should create a new "dynamic link library" project with your C++
compiler. Add the Orbiterlib and Orbitersdk.lib files to the project (found in Orbitersdk\lib). Add
Orbitersdk\include to your include path. Create a C++ source file for your project, and add the essen-
tial API interface functions:

#define ORBITER_MODULE
finclude "OrbiterAPI.h"
#include "CelbodyAPI.h"

DLLCLBK void InitModule (HINSTANCE hModule)
{
// module initialisation

}

DLLCLBK void ExitModule (HINSTANCE hModule)
{
// module cleanup

}

DLLCKBK CELBODY *InitInstance (OBJHANDLE hBody)
{

// instance initialisation

return new MyPlanet;

}

DLLCLBK void ExitInstance (CELBODY xbody)
{

// instance cleanup

delete (MyPlanetx)body;

The first line defining ORBITER_MODULE is required to ensure that all initialisation functions are properly
called by Orbiter.

OrbiterAPLh contains the general API interface, and CelBodyAPLh contains the planet module- specific
interface, in particular the CELBODY class, which will be discussed below.

The InitModule() and ExitModule() methods are called only once per Orbiter session, when the DLL mod-
ule is loaded or unloaded, respectively. They can be used to set up global parameters. You can omit them
if your module doesn’t need any such initialisation.

The Initinstance() and ExitInstance() functions are more important: You use them to create and destroy an
instance of your planet class. This class is derived from CELBODY. In this example, we called it MyPlanet.

12.1.2 The CELBODY interface class

All communication between Orbiter and your planet module will be conducted via the methods of the
derived planet class. You overload the various callback functions of the CELBODY class to add the re-
quired functionality. Check the API Reference manual for a complete list of class methods. A typical
implementation might look like this:

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.1 Planet Modules 570

class MyPlanet: public CELBODY
{
public:
MyPlanet () ;

bool bEphemeris () const;

void clbkInit (FILEHANDLE cfg);

int clbkEphemeris (double mjd, int req, double x*ret);

int clbkFastEphemeris (double simt, int req, double =*ret);
bi

MyPlanet::MyPlanet () : CELBODY ()
{

// add constructor code here

}

bool MyPlanet::bEphemeris () const
{
return true; // class supports ephemeris calculation

}

void MyPlanet::clbkInit (FILEHANDLE cfgqg)
{
// read parameters from config file (e.g. tolerance limits, etc)
// perform any required initialisation (e.g. read perturbation terms from data files)

}

int MyPlanet::clbkEphemeris (double mijd, int req, double =xret)
{
// return planet position and velocity for Modified Julian date mjd in ret

}

int MyPlanet::clbkFastEphemeris (double simt, int reqg, double xret)
{
// return interpolated planet position and velocity for simulation time simt in ret

}

clbkEphemeris() and clbkFastEphemeris() are the functions which will contain the actual ephemeris calcu-
lations for the planet at the requested time. clbkEphemeris() is only called by Orbiter if the planet’s state
at an arbitrary time is required (for example by an instrument calculating the position at some future time).
When Orbiter updates the planet’s position for the next simulation time frame, the clbkFastEphemeris()
function will be called instead. This means that clbkFastEphemeris() will be called at each frame, each
time advancing the time by a small amount. This can be used for a more efficient calculation. Instead
of performing a full series evaluation, which can be lengthy, you may implement an interpolation scheme
which performs the full calculation only occasionally, and interpolates between these samples to return the
state at an intermediate time.

For both functions, the requested type of data is specified as a group of EPHEM_xxx bitflags in the req
parameter. (see CELBODY) This can be any combination of position and velocity data for the celesital body
itself and/or the barycentre of the system defined by the body and all its children (moons). The functions
should calculate all required data, either in cartesian or polar coordinates, and fill the ret array with the
results. ret contains 12 entries, used as follows:

ret[0-2]: true position
ret[3-5]: true velocity
ret[6-8]: barycentric position
ret[9-11]: barycentric velocity

Only the fields requested by req need to be filled. In cartesian coordinates, the position fields must contain
the x, y and z coordinates in [m], and the velocity fields must contain the velocities dx/dt, dy/dt, dz/dt in
[m/s]. In spherical polar coordinates, the position fields must contain longitude j [rad], latitude q [rad] and

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.2 Graphics Client Development 571

radial distance r [AU], and the velocity fields must contain the polar velocities dj/dt [rad/s], dg/dt [rad/s]
and dr/dt [AU/s].

The functions should indicate the fields actually calculated via the return value. This is in particular impor-
tant if not all requests could be satisified (e.g. position and velocity was requested, but only position could
be calculated). The return value is interpreted as a bitflag that can contain the same EPHEM_xxx flags as
the req parameter. If all requests could be satisfied, it should be identical to req. In addition, the return value
should contain additional flags indicating the properties of the returned data, including EPHEM_POLAR if
the data are returned as spherical polar coordinates, or EPHEM_TRUEISBARY if the true and barycentric
coordinates are identical (i.e. the celestial body does not have child bodies).

Note:

The older standalone module callback functions (opcXXX) are obsolete and should no longer be used.

See also:

CELBODY

12.2 Graphics Client Development

This page contains information for developers of plug-in graphics clients for the non-graphics version of
Orbiter (Orbiter_NG).

Graphics clients are DLL modules which contain the implementation of a client class derived from
oapi::GraphicsClient. They handle the device- specific aspects of rendering a 3-D window into the "or-
biter world".

Contents:

¢ Particle Streams HowTo

12.3 Deleted and obsolete functions and methods
The following API function and class methods are no longer supported:

* oapiGetStationByName()
* oapiGetStationByIndex()

* oapiGetStationCount()

12.4 Basics of orbital mechanics

This section of the manual contains a very brief summary of basic celestial mechanics. It is intended to
clarify some of the concepts of various API functions in this reference document, but may also provide
some useful general information for beginners.

12.4.1 Contents

Elliptic orbits
The orbit in space

Kepler’s equation

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.5 Elliptic orbits 572

12.5 Elliptic orbits

This page provides a summary of parameters for ideal 2-body orbital elements.

Conic section: The trajectory of an object under the influence of the gravitational field generated by a point
mass follows a conic section. This may be either periodic (closed circular or elliptic orbit) or nonperiodic
(open parabolic or hyperbolic orbit). The equation of a conic section with the focus in the origin is given

in polar coordinates by
p=—r
1+ ecos(v)

with eccentricity e and semi-latus rectum p.

Standard gravitational parameter: In the following, the standard gravitational parameter is defined as
the product of the gravitational constant G and the mass M of the central body at focus F:

uw=GM

12.5.1 Elliptic orbits

Elliptic (closed) orbits are characterised by an eccentricity e < 1. A special case are circular orbits (e = 0).

Semi-major axis (a): The longest semi-diameter of the ellipse. The distance from the centre (C) through
one of the foci (F) to the edge of the ellipse (A). The semi-major axis can be calculated from the parameters

of the conic section as P
a0 =

T 1—e2

Semi-minor axis (b): The shortest semi-diameter of the ellipse. The distance from the centre (C) to the
edge of the ellipse, at right angles to the major axis. The semi-minor axis can be calculated from the

parameters of the conic section as
b= L — ayv1—e?

Periapsis: The periapsis (A) (perigee for Earth orbits, perilune for lunar orbits) is the lowest point of the
orbit, i.e. the point of the ellipse closest to focus F. The periapsis distance rpe = FA is given by

D
1+e

Tpe =(l—e)a

Apoapsis: The apoapsis (B) (apogee for Earth orbits, apolune for lunar orbits) is the highest point of the
orbit, i.e. the point of the ellipse farthest from focus F. The apoapsis distance rap = FB is given by

R
Tap = 7,

=(1+e)a

True anomaly: The true anomaly (v) of an orbiting object (P) is the angle AFP between P and apoapsis A,
measured at F.

Orbital period: According to Kepler’s third law, the square of the period T of an orbiting body is propor-
tional to the cube of the semi-major axis a of the orbit. T is given by

3
T =2m @
I

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.6 The orbit in space 573

Orbital speed: The orbital speed v as a function of radius r is given by

2 1
Cha V20 el

Maximum and minimum speed occur at periapsis and apoapsis, respectively:

I € 0 oo = [d=en
be —e)a’ o (I1+e)a
The mean orbital speed is given by
~ 27ma n
V=——=4/==na
T a

Specific orbital energy: (or vis-viva energy) E is the sum of potential energy Ep and kinetic energy Ey of
an orbiting body. E is constant along the orbit:
v? 1 p?
E=E+E :?—gzﬂi(ye?)
where h is the specific angular momentum of the orbiting body.

For specific types of orbit, E is given by

—% if e<l1
E = 0 if e=1
£ if e>1

2a

12.6 The orbit in space

The orientation of the orbital trajectory in space, relative to the reference body, is defined by three param-
eters (in addition to the two parameters describing the shape):

* inclination
* longitude of ascending node

* longitude of periapsis

The position of the orbiting object along the orbit is defined by an additional parameter, the true longitude.

The orientation of an orbit in space is defined with respect to a frame of reference. For planetary orbits, the
reference is usually given by the plane of the ecliptic and direction of the vernal equinox. For satellites in
Earth orbit, the equatorial plane usually defines the reference plane.

Inclination: The inclination i defines the tilt of the orbital plane against the reference plane. The intersec-
tion of the orbital plane with the reference plane is denoted as the line of nodes.

Ascending and descending node: The line of nodes always passes through the orbit reference body (S).
The nodes Ny and N, are the points where the orbital trajectory intersects the reference plane. If the

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.7 Kepler’s equation 574

direction of orbit is such that the orbiting body passes the plane of the ecliptic from south to north at Ny ,
then N is the ascending node, and N5 is the descending node.

Longitude of ascending node: The angle between the reference direction T and node Ny is the longitude
of the ascending node (0).

Argument of periapsis: The angle between node N and periapsis A is the argument of periapsis (w).
Longitude of periapsis: The sum w = 6 + w is called the longitude of periapsis.

True longitude: The sum of longitude of periapsis and true anomaly,
L=w+v=0+w+v

is called the true longitude of the orbiting body.

12.6.1 Mean longitude

Consider a vector originating in S and moving in the plane of the orbit with mean angular velocity n,
passing through point A at time) .

Mean anomaly: At time t, the vector is located at mean anomaly M = n(t — to) relative to periapsis A.

Mean longitude: The mean longitude of the orbiting body is the sum of mean anomaly and longitude of
periapsis:
l=0+w+n(t—ty)) =w+n(t—to)

The mean longitude at the epoch is defined as the mean longitude at t=0, given by
€ =w — nty
The mean longitude can then be written as
l=nt+e.
The mean anomaly is given by

M=n(t—-t)=l-w=nt+e—w

12.7 Kepler’s equation
12.7.1 True and eccentric anomaly

To find the position P of an orbiting body at some time t, we need to find its true anomaly v at that time.
Calculating true anomaly is not trivial for eccentric orbits, because the velocity of the orbiting body is
continually changing.

Eccentric anomaly: Define a circle with radius a (semi-major axis of the orbit ellipse) whose centre
coincides with the centre of the ellipse. Project object position P perpendicular to the semi-major axis
onto the circle (Q). Then the eccentric anomaly E is defined as the angle ACQ between periapsis A and Q,
measured at the centre C of the circle.

The relationship between orbit radius r and eccentric anomaly E is given by

r=a(l —ecosE)

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.8 Particle Streams HowTo 575

The relationship between true anomaly v and E is given by

v 1+e E
tan — = tan —
2 1—e 2

With these equations, position P can be calculated when eccentric anomaly E is known. E is calculated for
a given time t by solving Kepler’s equation.

12.7.2 Kepler’s equation
Consider a vector rotating around C at constant angular velocity n, given by the orbiter’s mean motion. If
the vector passes A at time ty , then its angle with A at time t is given by

M(t) = n(t — to)

M is called the mean anomaly. Kepler’s equation defines a relation between mean anomaly M and eccentric
anomaly E:
E(t) —esin E(t) = M(t) = n(t — to)

It cannot be solved for E in closed form, and must generally be solved iteratively.

12.8 Particle Streams HowTo

Particle streams are a component of Orbiter graphics clients (see Graphics Client Development).

Particle streams can be used to create visual effects for contrails, exhaust and plasma streams, reentry
heating, condensation, etc.

The management of particle streams is almost entirely the responsibility of the graphics client. The orbiter
core notifies the client only

* to request a new particle stream for a vessel object

* to detach a stream from its object (e.g. if the object is deleted)

The implementation details for the particle streams, including render options, are left to the client.

12.8.1 Adding particle stream support
To add particle stream support to a graphics client, the following steps are required:

¢ Create one or more classes derived from oapi::ParticleStream
* Overload the particle stream-related callback methods of oapi::GraphicsClient, including

— oapi::GraphicsClient::clbkCreateParticleStream()
— oapi::GraphicsClient::clbkCreateExhaustStream()
— oapi::GraphicsClient::clbkCreateReentryStream()

By default, these methods return NULL pointers, i.e. don’t provide particle stream support. Your over-
loaded methods should create an instance of an appropriate derived particle stream class and return a
pointer to it.

Important: The client must keep track of all particle streams created. In particular, the orbiter core never
deletes any particle streams it has obtained from the client. Particle stream management and cleanup must
be provided by the client.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.9 Vessel module concepts 576

12.8.2 Attaching and detaching streams

Once a particle stream has been created, it must be connected to a vessel instance (provided by the hVessel
parameter in each of the particle stream-related callback functions of the graphics client). To connect the
particle stream to the vessel, use one of the oapi::ParticleStream::Attach() methods using the provided
vessel handle. The particle emission point and emission direction are relative to the associated vessel.

Sometimes Orbiter will call the oapi::ParticleStream::Detach() method for a stream. This is usually in
response to deletion of the vessel. Therefore, the stream should no longer make use of the vessel reference
after it has been detached. In particular, no new particles should be generated.

Important: After Orbiter has detached a particle stream, it will no longer access it. The client is free to
delete the particle stream instance once it has been detached. Generally, the stream should be deleted after
all the remaining particles in the stream have expired.

12.8.3 Deleting streams

Generally, streams should only be deleted after they have been detached and after all remaining particles
have expired. Deleting a stream with active particles will create a visual inconsistency and should be
avoided. The only exception is the cleanup at the end of a simulation session.

When a stream is deleted while still attached to its object, Orbiter will call the stream’s Detach method
during the destruction process.

12.9 Vessel module concepts
12.9.1 Docking port management

Docking ports allow individual vessel objects to connect with each other, forming a superstructure. Orbiter
automatically calculates the physical properties of the superstructure from the properties of the individual
constituents. In particular, the following properties are managed by Orbiter:

* total mass: The mass of the superstructure is the sum of masses of the individual vessels

» centre of mass. The centre of mass of the superstructure is calculated from the individual vessel
masses and their relative position

* inertia tensor: A simplified rigid-body model is applied to calculate an inertia tensor for the super-
structure.

* effects of forces: any forces acting on individual vessels (thrust, drag, lift, etc.) are transformed into
the superstructure frame and applied.

The superstructure model allows to apply the effect of forces calculated for individual vessels onto the
superstructure. For example, a thrust force that acts along the centre of gravity of an individual vessel may
induce a torque on the superstructure, depending on the relative position of the vessel with respect to the
superstructure centre of mass.

Currently, superstructures are only supported in free flight, nor when landed on a planetary surface. The
reason is the difficulty of calculating the interaction of the composite structure with the surface. This may
be addressed in the future.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.10 Todo List 577

12.9.2 Attachment management

Similar to docking ports, attachment points allow to connect two or more vessel objects. There are a few
important differences:

* Docking ports establish peer connections, attachments establish parent-child hierarchies: A parent
vessel can have multiple attached children, but each child can only be attached to a single parent.

» Attachments use a simplified physics engine: the root parent alone defines the object’s trajectory
(both for freespace and atmospheric flight). The children are assumed to have no influence on flight
behaviour.

* Orbiter establishes docking connections automatically if the docking ports of two vessels are brought
close to each other. Attachment connections are only established by API calls.

* Currently, docking connections only work in freeflight. Attachments also work for landed vessels.
Attachment connections are useful for attaching small objects to larger vessels. For example, Orbiter uses

attachments to connect payload items to the Space Shuttle’s cargo bay or the tip of the RMS manipulator
arm (see Orbitersdk\samples\ Atlantis).

Attachment points use an identifier string (up to 8 characters) which can provide a method to establish
compatibility. For example, the Atlantis RMS arm tip will only connect to attachment points with an
id string that contains "GS" in the first 2 characters (it ignores the last 6 characters). Now let’s assume
somebody creates another Shuttle (say a Buran) with its own RMS arm. He could then allow it to

» grapple exactly the same objects as Atlantis, by checking for "GS".

 grapple a subset of objects grapplable by Atlantis, by checking additional characters, for example
NGSXH-

* grapple all objects grapplable by Atlantis, plus additional objects, for example by checking for "GS"
or "GX".

* grapple entirely different objects, for example by checking for "GX".

To connect a satellite into the payload bay, Atlantis uses the id "XS" (This means that the payload bay
connection can not be used for grappling. To allow a satellite to be grappled and stored in the payload bay,
it must define both a "GS" and an "XS" attachment point).

12.10 Todo List

Member oapi::GraphicsClient::clbkGetSurfaceDC(SURFHANDLE surf) This method should be
moved into the GDIClient class

Member oapi::GraphicsClient::clbkReleaseSurfaceDC(SURFHANDLE surf, HDC hDC) This
method should be moved into the GDIClient class

File OrbiterAPL.h Check functions in VESSELSTATUS?2::arot and oapiGetPlanetObliquityMatrix(), mi-
nus sign has changed a place in a matrix. Is this correct??

File OrbiterAPL.h class CameraMode documentation

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.11 Deprecated List 578

12.11 Deprecated List

Member MFD::Update(HDC hDC)=0 This method is deprecated. MFD implementations should derive
from MFD?2 and use the device-independent MFD2::Update(oapi::Sketchpad:) method instead.

Member MFD::Title(HDC hDC, const char «title) const This method is deprecated. MFD implemen-
tations should derive from MFD?2 and use the device-independent MFD2::Title method instead.

Member MFD::SelectDefaultPen(HDC hDC, DWORD i) const This method is deprecated. MFD im-
plementations should derive from MFD2 and use the device-independent MFD2::GetDefaultPen
method instead.

Member MFD::SelectDefaultFont(HDC hDC, DWORD i) const This method is deprecated. MFD im-
plementations should derive from MFD2 and use the device-independent MFD2::GetDefaultFont
method instead.

Member VESSEL::SetEngineLevel(ENGINETYPE eng, double level) const This method has been
replaced by VESSEL::SetThrusterGroupLevel.

Member VESSEL::IncEngineLevel ENGINETYPE eng, double dlevel) const This method has been
replaced by VESSEL::IncThrusterGroupLevel.

Member VESSEL::SetExhaustScales(EXHAUSTTYPE exh, WORD id, double Iscale, double wscale) const
This method no longer performs any action. It has been replaced by the VESSEL::AddExhaust
methods.

See also:

AddExhaust(THRUSTER_HANDLE,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,double, SURFHANDLE)const,
AddExhaust(THRUSTER_HANDLE,double,double,const VECTOR3&,const VEC-
TOR3&,SURFHANDLE)const

Member VESSEL::DelThrusterGroup(THGROUP_HANDLE &thg, THGROUP_TYPE thgt, bool delth=false) const
This method has been replaced by VESSEL.::DelThrusterGroup(THGROUP_HANDLE,bool)const.

Member VESSEL::GetBankMomentScale() const This method has been replaced by VES-
SEL::GetYawMomentScale.

Member VESSEL::SetBankMomentScale(double scale) const This method has been replaced by
VESSEL::SetYawMomentScale.

Member VESSEL::SetNavRecv(DWORD n, DWORD ch) const This method has been replaced by
VESSEL::SetNavChannel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.11 Deprecated List 579

Member VESSEL::GetNavRecv(DWORD n) const This method has been replaced by VES-
SEL::GetNavChannel

Member VESSEL::SetCOG_elev(double h) const This method is obsolete and should no longer be
used. It has been replaced by VESSEL::SetTouchdownPoints.

Member VESSEL::ClearMeshes() const This version is obsolete and has been replaced by VES-
SEL::ClearMeshes(bool)const .

Member VESSEL::SetMesh VisibleInternal(UINT idx, bool visible) const This method is obsolete
and has been replaced by VESSEL::SetMeshVisibilityMode.

Member VESSEL::SaveDefaultState(FILEHANDLE scn) const Use a call to the base class VES-
SEL2::clbkSaveState from within the overloaded callback function instead.

Member VESSEL::ParseScenarioLine(char xline, VESSELSTATUS xstatus) const This function is
retained for backward compatibility only. New modules should overload the VES-
SEL2::clbkLoadStateEx function and use VESSEL.::ParseScenarioLineEx for default state parsing.

Member VESSEL::Create(const char xname, const char xclassname, const VESSELSTATUS &status)
This method has been replaced with oapiCreateVessel and oapiCreate VesselEx.

Member VESSEL2::clbkDrawHUD(int mode, const HUDPAINTSPEC x«hps, HDC hDC) This
method contains a device-dependent drawing context and may not work with all graphics clients. It
has been superseded by VESSEL3::clbkDrawHUD.

Member oapiGetAtmPressureDensity This function has been replaced by oapiGetAtm.

Member oapiGetFocusAtmPressureDensity This function has been replaced by oapiGetAtm.

Member oapiGetMFDModeSpec This function has been replaced by oapiGetMFDModeSpecEx

Member oapiGetStationByIndex Stations are no longer distinguished from vessels. This function does
not perform any action other than writing a warning to the log file. Use oapiGetVesselByIndex
instead.

Member oapiGetStationByName Stations are no longer distinguished from vessels. This function does
not perform any action other than writing a warning to the log file. Use oapiGetVesselByName
instead.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

12.12 Bug List 580

Member oapiRegisterMFDMode This function has been replaced by oapiRegisterMFD-
Mode(MFDMODESPECEX&).

Member opcCloseRenderViewport This function has been replaced by
oapi::Module::clbkSimulationEnd.

Member opcDeleteVessel This function has been replaced by oapi::Module::clbkDelete Vessel.

Member opcFocusChanged This function has been replaced by oapi::Module::clbkFocusChanged.

Member opcOpenRenderViewport This function has been replaced by
oapi::Module::clbkSimulationStart.

Member opcPause This function has been replaced by oapi::Module::clbkPause.

Member opcPostStep This function has been replaced by oapi::Module::clbkPostStep.

Member opcPreStep This function has been replaced by oapi::Module::clbkPreStep.

Member opcTimeAccChanged This function has been replaced by
oapi::Module::clbkTime AccChanged.

12.12 Bug List
Member MFD::ButtonLabel(int bt) This function should really return a const charsx
Member VESSEL::AddAnimationComponent(UINT anim, double state0, double statel, MGROUP_TRANSFORM :xtr

When defining a scaling transformation as a child of a parent rotation, only homogeneous scaling is
supported, i.e. scale.x = scale.y = scale.z is required.

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

Index

~CELBODY2
CELBODY?2, 206
~ExternMFD
ExternMFD, 215
~GraphicsClient
oapi::GraphicsClient, 227
M
vec, 22
\Y

vec, 22

Activate

LightEmitter, 270
ActivateNavmode

VESSEL, 374
Active

ExternMFD, 215
AddAnimationComponent

VESSEL, 448
AddBeacon

VESSEL, 473
AddExhaust

VESSEL, 465-467
AddExhaustStream

VESSEL, 470, 471
AddForce

VESSEL, 402
AddGraph

GraphMFD, 259
AddMesh

VESSEL, 439, 440
AddParticleStream

VESSEL, 470
AddPlot

GraphMFD, 259
AddPointLight

VESSEL, 475
AddReentryStream

VESSEL, 471
AddSpotLight

VESSEL, 475
Aerodynamic control surface types, 34
AIRCTRL_AILERON

airctrltype, 34
AIRCTRL_AXIS_AUTO

airctrlaxis, 35
AIRCTRL_ELEVATOR

airctrltype, 34
AIRCTRL_ELEVATORTRIM

airctrltype, 34
AIRCTRL_FLAP

airctrltype, 34
AIRCTRL_RUDDER
airctrltype, 34
AIRCTRL_RUDDERTRIM
airctrltype, 34
AIRCTRL_TYPE
airctrltype, 34
airctrlaxis
AIRCTRL_AXIS_AUTO, 35
airctrltype
AIRCTRL_AILERON, 34
AIRCTRL_ELEVATOR, 34
AIRCTRL_ELEVATORTRIM, 34
AIRCTRL_FLAP, 34
AIRCTRL_RUDDER, 34
AIRCTRL_RUDDERTRIM, 34
AIRCTRL_TYPE, 34
Airfoil orientation, 34
AIRFOIL_ORIENTATION
airfoilliftdir, 34
AIRFOILHANDLE
handle, 18
airfoilliftdir
AIRFOIL_ORIENTATION, 34
LIFT_HORIZONTAL, 34
LIFT_VERTICAL, 34
ANIMATION, 190
Animation flags, 32
ANIMATIONCOMP, 191
ANIMATIONCOMPONENT_HANDLE
handle, 18
Annotations
oapiAnnotationSetColour, 166
oapiAnnotationSetPos, 166
oapiAnnotationSetSize, 167
oapiAnnotationSetText, 167
oapiCreateAnnotation, 167
oapiDelAnnotation, 168
arot
VESSELSTATUS2, 514
ATMCONST, 192
ATMOSPHERE, 193
ATMOSPHERE, 194
clbkConstants, 195
clbkName, 194
clbkParams, 195
PRM_ALT, 194
PRM_AP, 194
PRM_F, 194
PRM_FBR, 194

INDEX

582

PRM_IN_FLAG, 194

PRM_LAT, 194

PRM_LNG, 194
ATMOSPHERE::PRM_IN, 196
ATMOSPHERE::PRM_OUT, 196
ATMPARAM, 197
Attach

oapi::ParticleStream, 304, 305
AttachChild

VESSEL, 464
AttachmentCount

VESSEL, 463
ATTACHMENTHANDLE

handle, 18

Baselnterface
oapiGetBaseEquPos, 96
oapiGetBasePadCount, 96
oapiGetBasePadEquPos, 97
oapiGetBasePadNav, 97
oapiGetBasePadStatus, 97
oapiGetBasePlanet, 98

BASELINE
oapi::Sketchpad, 318

BEACONLIGHTSPEC, 197

bEphemeris
CELBODY, 201

Bit flags for blitting operations, 15

Bit flags for planetarium mode elements, 14

Bitflags for EXHAUSTSPEC flags field., 31

BK_OPAQUE
oapi::Sketchpad, 319

BK_TRANSPARENT
oapi::Sketchpad, 319

BkgMode
oapi::Sketchpad, 318

BLT_TGTCOLORKEY
bltflag, 16

bltflag
BLT_TGTCOLORKEY, 16

Body functions, 61

BOLD
oapi::Font, 219

BOTTOM
oapi::Sketchpad, 318

Brush
oapi::Brush, 199

ButtonLabel
MFD, 284

ButtonMenu
MFD, 284

Camera
oapiCameraAperture, 84

oapiCameraAttach, 84
oapiCameraAzimuth, 85
oapiCameraGlobalDir, 85
oapiCameraGlobalPos, 85
oapiCameralnternal, 85
oapiCameraMode, 85
oapiCameraPolar, 86
oapiCameraRotAzimuth, 86
oapiCameraRotPolar, 86
oapiCameraScaleDist, 86
oapiCameraSetAperture, 87
oapiCameraSetCockpitDir, 87
oapiCameraTarget, 87
oapiCameraTargetDist, 88
oapiCockpitMode, 88

Camera functions, 83

CELBODY, 200
bEphemeris, 201
clbkAtmParam, 203
clbkEphemeris, 201
clbkFastEphemeris, 202
clbkInit, 201
Version, 201

CELBODY2, 204
~CELBODY?2, 206
CELBODY?2, 206
clbklInit, 206
FreeAtmosphere, 208
FreeAtmosphereModule, 209
GetAtmosphere, 207
GetChild, 206
GetParent, 206
Legacy Atmospherelnterface, 207
Load AtmosphereModule, 208
SetAtmosphere, 207
SidRotPeriod, 207

CENTER
oapi::Sketchpad, 318

cfgprm
CFGPRM_AMBIENTLEVEL, 11
CFGPRM_ATMFOG, 11
CFGPRM_ATMHAZE, 11
CFGPRM_CLOUDS, 11
CFGPRM_CLOUDSHADOWS, 11
CFGPRM_CSPHEREINTENS, 11
CFGPRM_CSPHERETEXTURE, 12
CFGPRM_LOCALLIGHT, 12
CFGPRM_MAXLIGHT, 12
CFGPRM_OBJECTSHADOWS, 12
CFGPRM_OBIJECTSPECULAR, 12
CFGPRM_PLANETARIUMFLAG, 12
CFGPRM_STARRENDERPRM, 12
CFGPRM_SURFACELIGHTBRT, 13
CFGPRM_SURFACELIGHTS, 13

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

583

CFGPRM_SURFACEMAXLEVEL, 13

CFGPRM_SURFACEPATCHAP, 13
CFGPRM_SURFACEREFLECT, 13
CFGPRM_SURFACERIPPLE, 13

CFGPRM_SURFACESPECULAR, 13

CFGPRM_VESSELSHADOWS, 14

CFGPRM_AMBIENTLEVEL
cfgprm, 11
CFGPRM_ATMFOG
cfgprm, 11
CFGPRM_ATMHAZE
cfgprm, 11
CFGPRM_CLOUDS
cfgprm, 11
CFGPRM_CLOUDSHADOWS
cfgprm, 11
CFGPRM_CSPHEREINTENS
cfgprm, 11
CFGPRM_CSPHERETEXTURE
cfgprm, 12
CFGPRM_LOCALLIGHT
cfgprm, 12
CFGPRM_MAXLIGHT
cfgprm, 12
CFGPRM_OBJECTSHADOWS
cfgprm, 12
CFGPRM_OBIJECTSPECULAR
cfgprm, 12
CFGPRM_PLANETARIUMFLAG
cfgprm, 12
CFGPRM_STARRENDERPRM
cfgprm, 12
CFGPRM_SURFACELIGHTBRT
cfgprm, 13
CFGPRM_SURFACELIGHTS
cfgprm, 13
CFGPRM_SURFACEMAXLEVEL
cfgprm, 13
CFGPRM_SURFACEPATCHAP
cfgprm, 13
CFGPRM_SURFACEREFLECT
cfgprm, 13
CFGPRM_SURFACERIPPLE
cfgprm, 13
CFGPRM_SURFACESPECULAR
cfgprm, 13
CFGPRM_VESSELSHADOWS
cfgprm, 14
clbkADCtrIMode
VESSEL?2, 491
clbkAnimate
VESSEL2, 493
clbkAtmParam
CELBODY, 203

clbkBIt
oapi::GraphicsClient, 243, 244
clbkCloseSession
oapi::GraphicsClient, 251
clbkConstants
ATMOSPHERE, 195
clbkConsumeBufferedKey
VESSEL?2, 494
clbkConsumeDirectKey
VESSEL?2, 494
clbkCopyBitmap
oapi::GraphicsClient, 246
clbkCreate Annotation
oapi::GraphicsClient, 234
clbkCreateBrush
oapi::GraphicsClient, 249
clbkCreateExhaustStream
oapi::GraphicsClient, 233
clbkCreateFont
oapi::GraphicsClient, 247
clbkCreateParticleStream
oapi::GraphicsClient, 232
clbkCreatePen
oapi::GraphicsClient, 248
clbkCreateReentryStream
oapi::GraphicsClient, 234
clbkCreateRenderWindow
oapi::GraphicsClient, 251
clbkCreateSurface
oapi::GraphicsClient, 240, 241
clbkCreateTexture
oapi::GraphicsClient, 240
clbkDeleteVessel
oapi::Module, 295
clbkDestroyRenderWindow
oapi::GraphicsClient, 252
clbkDisplayFrame
oapi::GraphicsClient, 253
clbkDockEvent
VESSEL2, 493
clbkDrawHUD
VESSEL2, 490
VESSEL3, 506
clbkEditMeshGroup
oapi::GraphicsClient, 232
clbkEphemeris
CELBODY, 201
clbkFastEphemeris
CELBODY, 202
clbkFillSurface
oapi::GraphicsClient, 245, 246
clbkFocusChanged
ExternMFD, 217
oapi::Module, 294

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

584

VESSEL2, 487
clbkFullscreenMode

oapi::GraphicsClient, 236
clbkGeneric

VESSEL3, 505
clbkGetDeviceColour

oapi::GraphicsClient, 243
clbkGetMesh

oapi::GraphicsClient, 231
clbkGetRadiationForce

VESSEL3, 508
clbkGetRenderParam

oapi::GraphicsClient, 236
clbkGetSketchpad

oapi::GraphicsClient, 247
clbkGetSurfaceDC

oapi::GraphicsClient, 250
clbkGetSurfaceSize

oapi::GraphicsClient, 242
clbkGetViewportSize

oapi::GraphicsClient, 236
clbkHUDMode

VESSEL2, 492
clbkIncrSurfaceRef

oapi::GraphicsClient, 241
clbklInit

CELBODY, 201

CELBODY?2, 206
clbkInitialise

oapi::GraphicsClient, 227
clbkLoadGenericCockpit

VESSEL2, 495
clbkLoadPanel

VESSEL2, 495
clbkLoadPanel2D

VESSEL3, 505
clbkLoadStateEx

VESSEL2, 486
clbkLoadTexture

oapi::GraphicsClient, 228
clbkLoadVC

VESSEL2, 497
clbkMFDMode

VESSEL2, 492
clbkName

ATMOSPHERE, 194
clbkNavMode

VESSEL2, 493
clbkNew Vessel

oapi::Module, 295
clbkOpen

Launchpadltem, 266
clbkPanelMouseEvent

VESSEL2, 496

VESSEL3, 504
clbkPanelRedrawEvent
VESSEL2, 496
VESSEL3, 504
clbkParams
ATMOSPHERE, 195
clbkPause
oapi::Module, 296
clbkPlaybackEvent
VESSEL2, 489
clbkPostCreation
oapi::GraphicsClient, 251
VESSEL2, 487
clbkPostStep
oapi::Module, 293
VESSEL2, 488
clbkPreOpenPopup
oapi::GraphicsClient, 232
clbkPreStep
oapi::Module, 293
VESSEL2, 488
clbkRCSMode
VESSEL2, 491
clbkRefreshButtons
ExternMFD, 217
clbkRefreshDisplay
ExternMFD, 217
clbkRefreshVideoData
oapi::GraphicsClient, 227
clbkReleaseBrush
oapi::GraphicsClient, 249
clbkReleaseFont
oapi::GraphicsClient, 248
clbkReleasePen
oapi::GraphicsClient, 249
clbkReleaseSketchpad
oapi::GraphicsClient, 247
clbkReleaseSurface
oapi::GraphicsClient, 241
clbkReleaseSurfaceDC
oapi::GraphicsClient, 250
clbkReleaseTexture
oapi::GraphicsClient, 228
clbkRender2DPanel
oapi::GraphicsClient, 239
clbkRenderHUD
VESSEL3, 507
clbkRenderScene
oapi::GraphicsClient, 253
clbkSaveState
VESSEL2, 486
clbkScaleBlt
oapi::GraphicsClient, 245
clbkSetClassCaps

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 585

VESSEL2, 485 ClearPropellantResources
clbkSetMeshMaterial VESSEL, 403

oapi::GraphicsClient, 229 ClearThrusterDefinitions
clbkSetMeshProperty VESSEL, 410

oapi::GraphicsClient, 229 ClearVariableDragElements
clbkSetMeshTexture VESSEL, 393

oapi::GraphicsClient, 229 COLOURA4, 209
clbkSetStateEx Configuration parameter identifiers, 10

VESSEL2, 487 ConsumeButton
clbkSetSurfaceColourKey MFD, 283

oapi::GraphicsClient, 242 ConsumeKeyBuffered
clbkSimulationEnd MFD, 283

oapi::Module, 293 ConsumeKeylmmediate
clbkSimulationStart MEFD, 283

oapi::Module, 293 Control surface axis orientation, 35
clbkStoreMeshPersistent Coordinate transformations, 79

oapi::GraphicsClient, 254 CopyMeshFromTemplate
clbkTimeAccChanged VESSEL, 445

oapi::Module, 295 Create
clbkTimeJump VESSEL, 482

oapi::Module, 294 CreateAirfoil
clbkUpdate VESSEL, 384

ExternMFD, 217 CreateAirfoil2

oapi::GraphicsClient, 252 VESSEL, 385
clbkUseLaunchpadVideoTab CreateAirfoil3

oapi::GraphicsClient, 251 VESSEL, 386
clbkVCMouseEvent CreateAnimation

VESSEL2, 498 VESSEL, 447
clbkVCRedrawEvent CreateAttachment

VESSEL2, 498 VESSEL, 461
clbkVesselJump CreateControlSurface

oapi::Module, 295 VESSEL, 388
clbkVisEvent CreateControlSurface2

oapi::GraphicsClient, 231 VESSEL, 389
clbkVisualCreated CreateControlSurface3

VESSEL2, 489 VESSEL, 390
clbkVisualDestroyed CreateDock

VESSEL2, 490 VESSEL, 456
clbkWriteConfig CreatePropellantResource

LaunchpadlItem, 266 VESSEL, 402
ClearAirfoilDefinitions CreateThruster

VESSEL, 388 VESSEL, 408
ClearAttachments CreateThrusterGroup

VESSEL, 462 VESSEL, 419
ClearBeacons CreateVariableDragElement

VESSEL, 474 VESSEL, 392
ClearControlSurfaceDefinitions Crossp

VESSEL, 391 vec, 23
ClearDockDefinitions CTRLSURFHANDLE

VESSEL, 457 handle, 18
ClearLightEmitters Custom MFD mode definition, 142

VESSEL, 477 Customisation - custom menu, dialogs, 149
ClearMeshes CustomMFD

VESSEL, 439, 480 oapiDisableMFDMode, 143

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

586

oapiGetMFDModeSpecEx, 143
oapiRegisterMFDMode, 144
oapiUnregisterMFDMode, 144

DeactivateNavmode

VESSEL, 374
Defines and Enumerations, 17
DefSetState

VESSEL, 367
DefSetStateEx

VESSEL, 368
DelAirfoil

VESSEL, 388
DelAnimation

VESSEL, 448
DelAnimationComponent

VESSEL, 449
DelAttachment

VESSEL, 461
DelBeacon

VESSEL, 474
DelControlSurface

VESSEL, 390
DelDock

VESSEL, 456
DelExhaust

VESSEL, 468
DelExhaustStream

VESSEL, 472
DelLightEmitter

VESSEL, 476
DelMesh

VESSEL, 441
DelPropellantResource

VESSEL, 403
DelThruster

VESSEL, 409
DelThrusterGroup

VESSEL, 420, 478
Description

LaunchpadItem, 265
Detach

oapi::ParticleStream, 305
DetachChild

VESSEL, 465
DEVMESHHANDLE

handle, 19
Dialog

oapiAddTitleButton, 150

oapiCloseDialog, 150

oapiDefDialogProc, 151

oapiFindDialog, 151

oapiFindLaunchpadltem, 152

oapiGetDialogContext, 152

oapiOpenDialog, 152
oapiOpenDialogEx, 153
oapiOpenHelp, 154
oapiOpenLaunchpadHelp, 154
oapiRegisterCustomCmd, 154
oapiRegisterLaunchpadltem, 155
oapiUnregisterCustomCmd, 155

oapiUnregisterLaunchpadltem, 155

DIFFUSE
PARTICLESTREAMSPEC, 309
dist
vec, 23
Dock
VESSEL, 459
DockCount
VESSEL, 458
DOCKHANDLE
handle, 19
DockingStatus
VESSEL, 459
dotp
vec, 23
Drawing support functions, 133
DrawSupport
oapiCreateBrush, 134
oapiCreateFont, 134
oapiCreatePen, 135
0apiGetDC, 135
oapiGetSketchpad, 136
oapiReleaseBrush, 136
oapiReleaseDC, 137
oapiReleaseFont, 137
oapiReleasePen, 137
oapiReleaseSketchpad, 137

EditAirfoil
VESSEL, 387
ELEMENTS, 210
Ellipse
oapi::Sketchpad, 325
EMISSIVE
PARTICLESTREAMSPEC, 309
EnableIDS
VESSEL, 433
EnableTransponder
VESSEL, 432
ENGINE_ATTITUDE
thrusterparam, 33
ENGINE_HOVER
thrusterparam, 33
ENGINE_MAIN
thrusterparam, 33
ENGINE_RETRO
thrusterparam, 33

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

ENGINESTATUS, 211
ENGINETYPE

thrusterparam, 33
Ephemeris data format bitflags, 10
EXHAUSTSPEC, 212
ExitModule

general_clbk, 184
ExternMFD, 213

~ExternMFD, 215

Active, 215

clbkFocusChanged, 217

clbkRefreshButtons, 217

clbkRefreshDisplay, 217

clbkUpdate, 217

ExternMFD, 215

GetButtonLabel, 216

GetDisplaySurface, 216

GetVessel, 215

Id, 215

OpenModeHelp, 217

ProcessButton, 216

Resize, 217

SendKey, 217

SetMode, 217

SetVessel, 216

File 10 Functions, 156

FILEHANDLE
handle, 19

FileIO
oapiCloseFile, 157
oapiOpenFile, 157
oapiReadltem_bool, 158
oapiReadlItem_float, 159
oapiReadItem_int, 159
oapiReadItem_string, 159
oapiReadltem_vec, 160
oapiReadScenario_nextline, 160
oapiSaveScenario, 161
oapiWriteItem_bool, 161
oapiWriteltem_float, 161
oapiWriteltem_int, 161
oapiWriteltem_string, 162
oapiWriteltem_vec, 162
oapiWriteLine, 162
oapiWriteLog, 163
oapiWriteScenario_float, 163
oapiWriteScenario_int, 163
oapiWriteScenario_string, 163
oapiWriteScenario_vec, 163

FindRange
GraphMFD, 261

flag
VESSELSTATUS, 510

VESSELSTATUS2, 513

FogParam, 217
Font
oapi::Font, 219
Free Atmosphere
CELBODY2, 208
Free AtmosphereModule
CELBODY?2, 209

Functions for planetary bodies, 88

General module callback functions, 183

general_clbk
ExitModule, 184
InitModule, 184

Generic vessel message identifiers, 42

GetADCtrIMode
VESSEL, 373
GetAirfoilParam
VESSEL, 386
GetAirspeed
VESSEL, 383
GetAltitude
VESSEL, 379
GetAngularAcc
VESSEL, 370
GetAngularMoment
VESSEL, 371
GetAngularVel
VESSEL, 370
GetAnimPtr
VESSEL, 450
GetAOA
VESSEL, 384
GetApDist
VESSEL, 379
GetArgPer
VESSEL, 378
GetAtmDensity
VESSEL, 381
GetAtmosphere
CELBODY?2, 207
GetAtmPressure
VESSEL, 382
GetAtmRef
VESSEL, 381
GetAtmTemperature
VESSEL, 381
GetAttachmentHandle
VESSEL, 464
GetAttachmentld
VESSEL, 463
GetAttachmentIndex
VESSEL, 464
GetAttachmentParams

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

VESSEL, 462
GetAttachmentStatus

VESSEL, 463
GetAttenuation

PointLight, 313
GetAttitudeLinLevel

VESSEL, 429
GetAttitudeMode

VESSEL, 427
GetAttitudeRotLevel

VESSEL, 428
GetBank

VESSEL, 380
GetBankMomentScale

VESSEL, 479
GetBaseShadowGeometry

oapi::GraphicsClient, 239
GetBaseStructures

oapi::GraphicsClient, 239
GetBaseTileList

oapi::GraphicsClient, 238
GetBeacon

VESSEL, 475
GetButtonLabel

ExternMFD, 216
GetCameraDefaultDirection

VESSEL, 436
GetCameraOffset

VESSEL, 435
GetCelestialMarkers

oapi::GraphicsClient, 255
GetCharSize

oapi::Sketchpad, 321
GetChild

CELBODY2, 206
GetClassName

VESSEL, 357
GetClipRadius

VESSEL, 360
GetCOG_elev

VESSEL, 362
GetConfigParam

oapi::GraphicsClient, 237
GetControlSurfaceLevel

VESSEL, 392
GetCrossSections

VESSEL, 364
GetCW

VESSEL, 393
GetDamageModel

VESSEL, 358
GetDC

oapi::Sketchpad, 328
GetDefaultColour

MEFD2, 290
GetDefaultFont
MFD2, 289
GetDefaultPen
MFD2, 289
GetDefaultPropellantResource
VESSEL, 407
GetDevMesh
VESSEL, 444
GetDirection
LightEmitter, 272
GetDirectionRef
LightEmitter, 273
GetDisplaySurface
ExternMFD, 216
GetDockHandle
VESSEL, 458
GetDockParams
VESSEL, 458
GetDockStatus
VESSEL, 458
GetDrag
VESSEL, 399
GetDragVector
VESSEL, 400
GetDynPressure
VESSEL, 382
GetEditorModule
VESSEL, 357
GetElements
VESSEL, 375, 376
GetEmptyMass
VESSEL, 362
GetEnableFocus
VESSEL, 358
GetEquPos
VESSEL, 381
GetExhaustCount
VESSEL, 468
GetExhaustLevel
VESSEL, 469
GetExhaustSpec
VESSEL, 468, 469
GetFlightModel
VESSEL, 358
GetFlightStatus
VESSEL, 368
GetForce Vector
VESSEL, 401
GetFuelMass
VESSEL, 408
GetFuelRate
VESSEL, 408
GetGDIFont

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

oapi::Font, 220
GetGlobalOrientation
VESSEL, 371
GetGlobalPos
VESSEL, 369
GetGlobal Vel
VESSEL, 369
GetGravityGradientDamping
VESSEL, 366
GetGravityRef
VESSEL, 375
GetGroupThruster
VESSEL, 422, 423
GetGroupThrusterCount
VESSEL, 422
GetHandle
VESSEL, 357
GetHeight
MFD2, 288
GetHorizonAirspeed Vector
VESSEL, 383
GetIDS
VESSEL, 434
GetISP
VESSEL, 418
GetLift
VESSEL, 399
GetLiftVector
VESSEL, 400
GetLightEmitter
VESSEL, 476
GetLinearMoment
VESSEL, 370
GetMachNumber
VESSEL, 382
GetManualControlLevel
VESSEL, 426
GetMass
VESSEL, 368
GetMaxFuelMass
VESSEL, 407
GetMesh
VESSEL, 443
GetMeshCount
VESSEL, 443
GetMeshName
VESSEL, 444
GetMeshOffset
VESSEL, 443
GetMeshTemplate
VESSEL, 444
GetMeshVisibilityMode
VESSEL, 445
GetMFDSurface

oapi::GraphicsClient, 238
GetModule
oapi::ModuleNV, 297
GetName
VESSEL, 357
GetNavChannel
VESSEL, 432
GetNavCount
VESSEL, 431
GetNavmodeState
VESSEL, 375
GetNavRecv
VESSEL, 480
GetNavRecvFreq
VESSEL, 432
GetNavSource
VESSEL, 435
GetNosewheelSteering
VESSEL, 472
GetParent
CELBODY?2, 206
GetPeDist
VESSEL, 378
GetPenumbra
SpotLight, 331
GetPitch
VESSEL, 380
GetPitchMomentScale
VESSEL, 396
GetPMI
VESSEL, 365
GetPopupList
oapi::GraphicsClient, 236
GetPosition
LightEmitter, 270
GetPositionRef
LightEmitter, 271
GetPropellantCount
VESSEL, 403
GetPropellantEfficiency
VESSEL, 405
GetPropellantFlowrate
VESSEL, 406
GetPropellantHandleByIndex
VESSEL, 403
GetPropellantMass
VESSEL, 404
GetPropellantMaxMass
VESSEL, 404
GetRange
PointLight, 312
GetRelativePos
VESSEL, 369
GetRelative Vel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 590

VESSEL, 370 VESSEL, 418
GetRotationMatrix GetThrusterRef

VESSEL, 453 VESSEL, 411
GetRotDrag GetThrusterResource

VESSEL, 395 VESSEL, 410
GetShipAirspeedVector GetThrustVector

VESSEL, 383 VESSEL, 400
GetSimMJD GetTorqueVector

oapi::ModuleNV, 298 VESSEL, 401
GetSimStep GetTotalPropellantFlowrate

oapi::ModuleNV, 298 VESSEL, 406
GetSimTime GetTotalPropellantMass

oapi::ModuleNV, 298 VESSEL, 405
GetSize GetTouchdownPoints

VESSEL, 359 VESSEL, 363
GetSlipAngle GetTransponder

VESSEL, 384 VESSEL, 434
GetSMi GetTrimScale

VESSEL, 378 VESSEL, 397
GetStatus GetUmbra

VESSEL, 367 SpotLight, 331
GetStatusEx GetUserThrusterGroupCount

VESSEL, 367 VESSEL, 423
GetSuperstructureCG GetUserThrusterGroupHandleByIndex

VESSEL, 452 VESSEL, 421
GetSurface GetVCHUDSurface

oapi::Sketchpad, 328 oapi::GraphicsClient, 238
GetSurfaceMarkers GetVCMFDSurface

oapi::GraphicsClient, 255 oapi::GraphicsClient, 238
GetSurfaceRef GetVessel

VESSEL, 379 ExternMFD, 215
GetTextWidth GetVideoData

oapi::Sketchpad, 322 oapi::GraphicsClient, 235
GetThrusterCount GetWeightVector

VESSEL, 410 VESSEL, 399
GetThrusterDir GetWheelbrakeLevel

VESSEL, 412 VESSEL, 473
GetThrusterGroupHandle GetWidth

VESSEL, 421 MFD2, 288
GetThrusterGroupLevel GetWingAspect

VESSEL, 426 VESSEL, 394
GetThrusterHandleByIndex GetWingEffectiveness

VESSEL, 410 VESSEL, 395
GetThrusterIsp GetYaw

VESSEL, 415 VESSEL, 380
GetThrusterIsp0 GetYawMomentScale

VESSEL, 414 VESSEL, 397
GetThrusterLevel Global2Local

VESSEL, 416 VESSEL, 455
GetThrusterMax GlobalRot

VESSEL, 413, 414 VESSEL, 453
GetThrusterMax0 GraphicsClient

VESSEL, 412 oapi::GraphicsClient, 227
GetThrusterMoment GraphMFD, 258

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

591

AddGraph, 259
AddPlot, 259
FindRange, 261
GraphMFD, 259
Plot, 261
SetAutoRange, 260
SetAutoTicks, 260
SetAxisTitle, 261
SetRange, 260
GroundContact
VESSEL, 372
GROUPEDITSPEC, 262

handle
AIRFOILHANDLE, 18
ANIMATIONCOMPONENT_HANDLE, 18
ATTACHMENTHANDLE, 18
CTRLSURFHANDLE, 18
DEVMESHHANDLE, 19
DOCKHANDLE, 19
FILEHANDLE, 19
INTERPRETERHANDLE, 19
LAUNCHPADITEM_HANDLE, 19
MESHHANDLE, 19
NAVHANDLE, 19
NOTEHANDLE, 19
OBJHANDLE, 19
PANELHANDLE, 19
PROPELLANT_HANDLE, 19
PSTREAM_HANDLE, 20
SURFHANDLE, 20
THGROUP_HANDLE, 20
THRUSTER_HANDLE, 20
VISHANDLE, 20

Handles, 18

HELPCONTEXT, 263

HorizonInvRot
VESSEL, 454

HorizonRot
VESSEL, 454

HUD mode identifiers, 38

HUD, MFD and panel functions, 120

HUDPARAM, 263

Id

ExternMFD, 215
Identifiers for visual events, 35
IncEngineLevel

VESSEL, 478
IncThrusterGroupLevel

VESSEL, 424
IncThrusterGroupLevel_SingleStep

VESSEL, 425
IncThrusterLevel

VESSEL, 417
IncThrusterLevel_SingleStep

VESSEL, 418
InitModule

general_clbk, 184
InitNavRadios

VESSEL, 431
InsertMesh

VESSEL, 440, 441
INTERPRETERHANDLE

handle, 19
InvalidateButtons

MFD, 281
InvalidateDisplay

MFD, 281
IsActive

LightEmitter, 270
ITALIC

oapi::Font, 219

Keyboard key identifiers, 170

LaunchpadlItem, 264
clbkOpen, 266
clbkWriteConfig, 266
Description, 265
Name, 265
OpenDialog, 265
LAUNCHPADITEM_HANDLE
handle, 19
LaunchpadVideoTab
oapi::GraphicsClient, 254
LaunchpadVideoWndProc
oapi::GraphicsClient, 235
LEFT
oapi::Sketchpad, 318
LegacyAtmospherelnterface
CELBODY?2, 207
length
vec, 23
Level
oapi::ParticleStream, 306
LEVELMAP
PARTICLESTREAMSPEC, 309
levelmap
PARTICLESTREAMSPEC, 309
LIFT_HORIZONTAL
airfoilliftdir, 34
LIFT_VERTICAL
airfoilliftdir, 34
Light beacon shape parameters, 31
LightEmitter, 267
Activate, 270
GetDirection, 272

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

592

GetDirectionRef, 273
GetPosition, 270
GetPositionRef, 271
IsActive, 270
LightEmitter, 269
SetDirection, 272
SetDirectionRef, 272
SetPosition, 270
SetPositionRef, 271
ShiftExplicitPosition, 271
LightEmitterCount
VESSEL, 476
Line
oapi::Sketchpad, 324
LineTo
oapi::Sketchpad, 324
Listclbkflag, 32
LISTENTRY, 273
Listentryflag, 32
LoadAtmosphereModule
CELBODY?2, 208
LoadConstellationLines
oapi::GraphicsClient, 255
LoadMeshClbkFunc
Mesh, 111
LoadStars
oapi::GraphicsClient, 254
Local lighting interface, 31
Local2Global
VESSEL, 454
Local2Rel
VESSEL, 455
Logical key ids, 176
LTYPE

PARTICLESTREAMSPEC, 309

Itype

PARTICLESTREAMSPEC, 309

LVL_FLAT

PARTICLESTREAMSPEC, 309

LVL_LIN

PARTICLESTREAMSPEC, 309

LVL_PLIN

PARTICLESTREAMSPEC, 309

LVL_PSQRT

PARTICLESTREAMSPEC, 309

LVL_SQRT

PARTICLESTREAMSPEC, 309

Manual control device identifiers, 37
Manual control mode identifiers, 37

MATERIAL, 274
MATRIX3, 274
Mesh
LoadMeshClbkFunc, 111

oapiAddMaterial, 111
oapiCreateMesh, 111
oapiDeleteMaterial, 112
oapiDeleteMesh, 112
oapiEditMeshGroup, 112
oapiGetTextureHandle, 113
oapiLoadMesh, 113
oapiLoadMeshGlobal, 114
oapiLoadTexture, 115
oapiMeshGroup, 115
oapiMeshGroupCount, 116
oapiMeshMaterial, 116
oapiMeshMaterialCount, 117
oapiMeshTextureCount, 117
oapiObjectVisualPtr, 117
oapiParticleSetLevelRef, 118
oapiReleaseTexture, 118
oapiSetMaterial, 118
oapiSetMeshProperty, 119
oapiSetTexture, 120

Mesh group editing flags, 29

MESHGROUP, 275

MESHGROUP_TRANSFORM, 276

MESHGROUPEX, 277
MeshgroupTransform
VESSEL, 446
MESHHANDLE
handle, 19
MeshModified
VESSEL, 446
MFD, 278
ButtonLabel, 284
ButtonMenu, 284
ConsumeButton, 283
ConsumeKeyBuffered, 283
ConsumeKeyImmediate, 283
InvalidateButtons, 281
InvalidateDisplay, 281
MFD, 280
ReadStatus, 285
RecallStatus, 286
SelectDefaultFont, 282
SelectDefaultPen, 282
StoreStatus, 285
Title, 281
Update, 281
WriteStatus, 285
MEFD identifiers, 40
MFD mode identifiers, 39
MFD?2, 286
GetDefaultColour, 290
GetDefaultFont, 289
GetDefaultPen, 289
GetHeight, 288

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

593

GetWidth, 288

MFD2, 287

Title, 288

Update, 288
Module

oapi::Module, 292
ModuleNV

oapi::ModuleNV, 297
Mouse event identifiers, 41
MoveTo

oapi::Sketchpad, 324
mul

vec, 24

Name
LaunchpadItem, 265
NAVDATA, 299
NAVHANDLE
handle, 19
Navigation mode identifiers, 36
Navigation radio transmitter functions, 103
Navigation radio transmitter types, 43
NavRadio
oapiGetNavChannel, 104
oapiGetNavData, 104
oapiGetNavDescr, 104
oapiGetNavFreq, 105
oapiGetNavPos, 105
oapiGetNavRange, 105
oapiGetNavSignal, 106
oapiGetNavType, 106
oapiNavInRange, 107
NonsphericalGravityEnabled
VESSEL, 373
NORMAL
oapi::Font, 219
normalise
vec, 24
NOTEHANDLE
handle, 19
NTVERTEX, 300

oapi
oapiDebugString, 46
oapiGetBarycentre, 46
oapiGetCmdLine, 47
oapiGetlnducedDrag, 47
oapiGetModuleVersion, 48
oapiGetOrbiterInstance, 48
oapiGetOrbiterVersion, 48
oapiGetPanelScale, 49
oapiGetViewportSize, 49
oapiGetWaveDrag, 49
oapiRegisterExhaustTexture, 50

oapiRegisterGraphicsClient, 50
oapiRegisterModule, 51
oapiRegisterReentryTexture, 51
oapi::Brush, 199
Brush, 199
oapi::DrawingTool, 210
oapi::Font, 218
BOLD, 219
Font, 219
GetGDIFont, 220
ITALIC, 219
NORMAL, 219
Style, 219
UNDERLINE, 219
oapi::GraphicsClient, 220
~QGraphicsClient, 227
clbkBlt, 243, 244
clbkCloseSession, 251
clbkCopyBitmap, 246
clbkCreate Annotation, 234
clbkCreateBrush, 249
clbkCreateExhaustStream, 233
clbkCreateFont, 247
clbkCreateParticleStream, 232
clbkCreatePen, 248
clbkCreateReentryStream, 234
clbkCreateRenderWindow, 251
clbkCreateSurface, 240, 241
clbkCreateTexture, 240
clbkDestroyRenderWindow, 252
clbkDisplayFrame, 253
clbkEditMeshGroup, 232
clbkFillSurface, 245, 246
clbkFullscreenMode, 236
clbkGetDeviceColour, 243
clbkGetMesh, 231
clbkGetRenderParam, 236
clbkGetSketchpad, 247
clbkGetSurfaceDC, 250
clbkGetSurfaceSize, 242
clbkGetViewportSize, 236
clbkIncrSurfaceRef, 241
clbkInitialise, 227
clbkLoadTexture, 228
clbkPostCreation, 251
clbkPreOpenPopup, 232
clbkRefreshVideoData, 227
clbkReleaseBrush, 249
clbkReleaseFont, 248
clbkReleasePen, 249
clbkReleaseSketchpad, 247
clbkReleaseSurface, 241
clbkReleaseSurfaceDC, 250
clbkReleaseTexture, 228

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

594

clbkRender2DPanel, 239
clbkRenderScene, 253
clbkScaleBlt, 245
clbkSetMeshMaterial, 229
clbkSetMeshProperty, 229
clbkSetMeshTexture, 229
clbkSetSurfaceColourKey, 242
clbkStoreMeshPersistent, 254
clbkUpdate, 252
clbkUseLaunchpadVideoTab, 251
clbkVisEvent, 231
GetBaseShadowGeometry, 239
GetBaseStructures, 239
GetBaseTileList, 238
GetCelestialMarkers, 255
GetConfigParam, 237
GetMFDSurface, 238
GetPopupList, 236
GetSurfaceMarkers, 255
GetVCHUDSurface, 238
GetVCMFDSurface, 238
GetVideoData, 235
GraphicsClient, 227
LaunchpadVideoTab, 254
LaunchpadVideoWndProc, 235
LoadConstellationLines, 255
LoadStars, 254
RegisterVisObject, 230
Render2DOverlay, 253
RenderWndProc, 235
TexturePath, 237
Unregister VisObject, 230
oapi::GraphicsClient:: LABELLIST, 256
oapi::GraphicsClient:: VIDEODATA, 257
oapi::IVECTOR?2, 264
oapi::Module, 291
clbkDeleteVessel, 295
clbkFocusChanged, 294
clbkNew Vessel, 295
clbkPause, 296
clbkPostStep, 293
clbkPreStep, 293
clbkSimulationEnd, 293
clbkSimulationStart, 293
clbkTimeAccChanged, 295
clbkTimeJump, 294
clbkVesselJump, 295
Module, 292
RENDER_FULLSCREEN, 292
RENDER_NONE, 292
RENDER_WINDOW, 292
RenderMode, 292
oapi::ModuleNV, 296
GetModule, 297

GetSimMJD, 298
GetSimStep, 298
GetSimTime, 298
ModuleNV, 297
Version, 297
oapi::ParticleStream, 302
Attach, 304, 305
Detach, 305
Level, 306
ParticleStream, 304
SetFixedDir, 305
SetFixedPos, 305
SetLevelPtr, 306
SetVariableDir, 306
SetVariablePos, 306
oapi::Pen, 309
Pen, 310
oapi::ScreenAnnotation, 313
ScreenAnnotation, 315
SetColour, 315
SetPosition, 315
SetSize, 315
SetText, 315
oapi::Sketchpad, 316
BASELINE, 318
BK_OPAQUE, 319
BK_TRANSPARENT, 319
BkgMode, 318
BOTTOM, 318
CENTER, 318
Ellipse, 325
GetCharSize, 321
GetDC, 328
GetSurface, 328
GetTextWidth, 322
LEFT, 318
Line, 324
LineTo, 324
MoveTo, 324
Pixel, 323
Polygon, 326
Polyline, 326
PolyPolygon, 327
PolyPolyline, 327
Rectangle, 325
RIGHT, 318
SetBackgroundColor, 320
SetBackgroundMode, 321
SetBrush, 320
SetFont, 319
SetOrigin, 322
SetPen, 319
SetTextAlign, 320
SetTextColor, 320

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

595

Sketchpad, 319
TAlign_horizontal, 318
TAlign_vertical, 318
Text, 322
TextBox, 323
TOP, 318
oapi_body
oapiGetGlobalPos, 62
oapiGetGlobal Vel, 62
oapiGetMass, 62
oapiGetRelativePos, 63
oapiGetRelativeVel, 63
oapiGetSize, 63
oapi_time
oapiGetFrameRate, 99
oapiGetPause, 99
0apiGetSimMJD, 99

oapiGetFocusEquPos, 72
oapiGetFocusGlobalPos, 72
oapiGetFocusGlobal Vel, 73
oapiGetFocusHeading, 73
oapiGetFocusPitch, 73

oapiGetFocusRelativePos, 73
oapiGetFocusRelative Vel, 74
oapiGetFocusShipAirspeed Vector, 74

oapiGetFuelMass, 74
oapiGetHeading, 75
oapiGetMaxFuelMass, 75
oapiGetPitch, 75

oapiGetPropellantHandle, 76

oapiGetPropellantMass, 76

oapiGetPropellantMaxMass, 76
oapiGetShipAirspeed Vector, 77

oapiSetAttitudeMode, 77

oapiGetSimStep, 100
oapiGetSimTime, 100
oapiGetSysMJD, 100
oapiGetSysStep, 100

oapiGetSysTime, 101

oapiGetTimeAcceleration, 101

oapiSetPause, 101
oapiSetSimMID, 101

oapiSetTimeAcceleration, 102

oapiTime2MID, 103

oapi_transformation

oapiEquToGlobal, 80
oapiEquToLocal, 80
oapiGetRotationMatrix, 80
oapiGlobalToEqu, 81
oapiGlobalToLocal, 81
oapiLocalToEqu, 82
oapiLocalToGlobal, 82
oapiOrthodome, 82

oapi_vessel

oapiGetAirspeed, 66
oapiGetAirspeed Vector, 67
oapiGetAltitude, 67
oapiGetAtm, 67
oapiGetAttitudeMode, 68
oapiGetBank, 68
oapiGetDockHandle, 69
oapiGetDockStatus, 69
oapiGetEmptyMass, 69
oapiGetEngineStatus, 70
oapiGetEquPos, 70
oapiGetFocusAirspeed, 70

oapiGetFocusAirspeedVector, 71

oapiGetFocusAltitude, 71

oapiGetFocusAttitudeMode, 71

oapiGetFocusBank, 71

oapiGetFocusEngineStatus, 72

oapiSetEmptyMass, 77
oapiSetEngineLevel, 78

oapiSetFocusAttitudeMode, 78
oapiToggleAttitudeMode, 78
oapiToggleFocusAttitudeMode, 79

oapiAddMaterial
Mesh, 111
oapiAddTitleButton
Dialog, 150
oapiAnnotationSetColour
Annotations, 166
oapiAnnotationSetPos
Annotations, 166
oapiAnnotationSetSize
Annotations, 167
oapiAnnotationSetText
Annotations, 167
oapiAsyncScriptCmd
Script, 107
oapiBIt
Surface, 139

oapiBltPanelAreaBackground

Panel, 122
oapiCameraAperture
Camera, 84

oapiCameraAttach
Camera, 84
oapiCameraAzimuth
Camera, 85
oapiCameraGlobalDir
Camera, 85
oapiCameraGlobalPos
Camera, 85
oapiCameralnternal
Camera, 85
oapiCameraMode
Camera, 85

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

oapiCameraPolar
Camera, 86
oapiCameraRotAzimuth
Camera, 86
oapiCameraRotPolar
Camera, 86
oapiCameraScaleDist
Camera, 86
oapiCameraSetAperture
Camera, 87
oapiCameraSetCockpitDir
Camera, 87
oapiCameraTarget
Camera, 87
oapiCameraTargetDist
Camera, 88
oapiClearSurfaceColourKey
Surface, 140
oapiCloseDialog
Dialog, 150
oapiCloseFile
FilelO, 157
oapiCockpitMode
Camera, 88
oapiColourFill
Surface, 140
oapiCreate Annotation
Annotations, 167
oapiCreateBrush
DrawSupport, 134
oapiCreateFont
DrawSupport, 134
oapiCreatelnterpreter
Script, 108
oapiCreateMesh
Mesh, 111
oapiCreatePen
DrawSupport, 135
oapiCreateSurface
Surface, 140, 141
oapiCreateTextureSurface
Surface, 141
oapiCreateVessel
VesselCreation, 60
oapiCreateVesselEx
VesselCreation, 60
oapiDebugString
oapi, 46
oapiDecHUDIntensity
Panel, 123
oapiDefDialogProc
Dialog, 151
oapiDelAnnotation
Annotations, 168

oapiDeleteMaterial
Mesh, 112
oapiDeleteMesh
Mesh, 112
oapiDeleteVessel
VesselCreation, 61
oapiDellnterpreter
Script, 108
oapiDestroySurface
Surface, 142
oapiDisableMFDMode
CustomMFD, 143
oapiEditMeshGroup
Mesh, 112
oapiEquToGlobal
oapi_transformation, 80
oapiEquToLocal
oapi_transformation, 80
oapiExecScriptCmd
Script, 108
oapiFindDialog
Dialog, 151
oapiFindLaunchpadltem
Dialog, 152
oapiGetAirspeed
oapi_vessel, 66
oapiGetAirspeed Vector
oapi_vessel, 67
oapiGetAltitude
oapi_vessel, 67
oapiGetAtm
oapi_vessel, 67
oapiGetAtmPressureDensity
Obsolete, 169
oapiGetAttitudeMode
oapi_vessel, 68
oapiGetBank
oapi_vessel, 68
oapiGetBarycentre
oapi, 46
oapiGetBaseByIndex
ObjectAccess, 53
oapiGetBaseByName
ObjectAccess, 53
oapiGetBaseCount
ObjectAccess, 53
oapiGetBaseEquPos
Baselnterface, 96
oapiGetBasePadCount
Baselnterface, 96
oapiGetBasePadEquPos
Baselnterface, 97
oapiGetBasePadNav
Baselnterface, 97

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 597
oapiGetBasePadStatus oapiGetFocusRelative Vel

Baselnterface, 97 oapi_vessel, 74
oapiGetBasePlanet oapiGetFocusShipAirspeed Vector

Baselnterface, 98
oapiGetCelbodylInterface
ObjectAccess, 53
oapiGetCmdLine
oapi, 47
oapiGetColour
Utility, 164
0apiGetDC
DrawSupport, 135
oapiGetDialogContext
Dialog, 152
oapiGetDockHandle
oapi_vessel, 69
oapiGetDockStatus
oapi_vessel, 69
oapiGetEmptyMass
oapi_vessel, 69
oapiGetEngineStatus
oapi_vessel, 70
oapiGetEquPos
oapi_vessel, 70
oapiGetFocusAirspeed
oapi_vessel, 70
oapiGetFocusAirspeedVector
oapi_vessel, 71
oapiGetFocusAltitude
oapi_vessel, 71
oapiGetFocusAtmPressureDensity
Obsolete, 169
oapiGetFocusAttitudeMode
oapi_vessel, 71
oapiGetFocusBank
oapi_vessel, 71
oapiGetFocusEngineStatus
oapi_vessel, 72
oapiGetFocusEquPos
oapi_vessel, 72
oapiGetFocusGlobalPos
oapi_vessel, 72
oapiGetFocusGlobal Vel
oapi_vessel, 73
oapiGetFocusHeading
oapi_vessel, 73
oapiGetFocusInterface
ObjectAccess, 54
oapiGetFocusObject
ObjectAccess, 54
oapiGetFocusPitch
oapi_vessel, 73
oapiGetFocusRelativePos
oapi_vessel, 73

oapi_vessel, 74
oapiGetFrameRate
oapi_time, 99
oapiGetFuelMass
oapi_vessel, 74
oapiGetGbodyByIndex
ObjectAccess, 54
0apiGetGbodyByName
ObjectAccess, 55
oapiGetGbodyCount
ObjectAccess, 55
oapiGetGlobalPos
oapi_body, 62
oapiGetGlobal Vel
oapi_body, 62
oapiGetGround Vector
Planet, 90
oapiGetHeading
oapi_vessel, 75
oapiGetHUDMode
Panel, 123
oapiGetIlnducedDrag
oapi, 47
oapiGetMass
oapi_body, 62
oapiGetMaxFuelMass
oapi_vessel, 75
oapiGetMFDMode
Panel, 123
oapiGetMFDModeSpec
Obsolete, 169
oapiGetMFDModeSpecEx
CustomMFD, 143
oapiGetModuleVersion
oapi, 48
oapiGetNavChannel
NavRadio, 104
oapiGetNavData
NavRadio, 104
oapiGetNavDescr
NavRadio, 104
oapiGetNavFreq
NavRadio, 105
oapiGetNavPos
NavRadio, 105
oapiGetNavRange
NavRadio, 105
oapiGetNavSignal
NavRadio, 106
oapiGetNavType
NavRadio, 106

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 598
oapiGetObjectByIndex 0apiGetSimMJD
ObjectAccess, 55 oapi_time, 99
oapiGetObjectByName oapiGetSimStep
ObjectAccess, 56 oapi_time, 100
0apiGetObjectCount oapiGetSimTime
ObjectAccess, 56 oapi_time, 100
oapiGetObjectName oapiGetSize
ObjectAccess, 56 oapi_body, 63
oapiGetObjectParam oapiGetSketchpad
ObjectAccess, 56 DrawSupport, 136
oapiGetObjectType oapiGetStationByIndex

ObjectAccess, 57
oapiGetOrbiterInstance
oapi, 48
oapiGetOrbiterVersion
oapi, 48
oapiGetPanelScale
oapi, 49
oapiGetPause
oapi_time, 99
oapiGetPitch
oapi_vessel, 75
oapiGetPlanetAtmConstants
Planet, 90
oapiGetPlanetAtmParams
Planet, 91
oapiGetPlanetCurrentRotation
Planet, 92
oapiGetPlanet]Coeff
Planet, 92
oapiGetPlanetJCoeffCount
Planet, 92
oapiGetPlanetObliquity
Planet, 93
oapiGetPlanetObliquityMatrix
Planet, 93
oapiGetPlanetPeriod
Planet, 94
oapiGetPlanetTheta
Planet, 94
oapiGetPropellantHandle
oapi_vessel, 76
oapiGetPropellantMass
oapi_vessel, 76
oapiGetPropellantMaxMass
oapi_vessel, 76
oapiGetRelativePos
oapi_body, 63
oapiGetRelative Vel
oapi_body, 63
oapiGetRotationMatrix
oapi_transformation, 80
oapiGetShipAirspeed Vector
oapi_vessel, 77

Obsolete, 170
oapiGetStationByName
Obsolete, 170

oapiGetSysMJD
oapi_time, 100
oapiGetSysStep
oapi_time, 100
oapiGetSysTime
oapi_time, 101
oapiGetTextureHandle
Mesh, 113
oapiGetTimeAcceleration
oapi_time, 101
oapiGetVesselByIndex
ObjectAccess, 57
oapiGetVesselByName
ObjectAccess, 58
oapiGetVessel Count
ObjectAccess, 58
oapiGetVessellnterface
ObjectAccess, 58
oapiGetViewportSize
oapi, 49
oapiGetWaveDrag
oapi, 49
oapiGetWind Vector
Planet, 94
oapiGlobalToEqu
oapi_transformation, 81
oapiGlobalToLocal
oapi_transformation, 81
oapilncHUDIntensity
Panel, 124
oapilsVessel
ObjectAccess, 59
oapiLoadMesh
Mesh, 113
oapiLoadMeshGlobal
Mesh, 114
oapiLoadTexture
Mesh, 115
oapiLocalToEqu
oapi_transformation, 82

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

599

oapiLocalToGlobal
oapi_transformation, 82
oapiMeshGroup
Mesh, 115
oapiMeshGroupCount
Mesh, 116
oapiMeshMaterial
Mesh, 116
oapiMeshMaterial Count
Mesh, 117
oapiMeshTextureCount
Mesh, 117
oapiMFDButtonLabel
Panel, 124
oapiNavInRange
NavRadio, 107
oapiObjectVisualPtr
Mesh, 117
oapiOpenDialog
Dialog, 152
oapiOpenDialogEx
Dialog, 153
oapiOpenFile
FilelO, 157
oapiOpenHelp
Dialog, 154
oapiOpenInputBox
UserInput, 165
oapiOpenLaunchpadHelp
Dialog, 154
0apiOpenMFD
Panel, 124
oapiOrthodome
oapi_transformation, 82
oapiParticleSetLevelRef
Mesh, 118
oapiPlanetHasAtmosphere
Planet, 95
oapiProcessMFDButton
Panel, 125
oapiRand
Utility, 164
oapiReadltem_bool
FilelO, 158
oapiReadltem_float
FilelO, 159
oapiReadlItem_int
FilelO, 159
oapiReadlItem_string
FilelO, 159
oapiReadltem_vec
FilelO, 160
oapiReadScenario_nextline
FilelO, 160

oapiRefreshMFDButtons
Panel, 125
oapiRegisterCustomCmd
Dialog, 154
oapiRegisterExhaustTexture
oapi, 50
oapiRegisterGraphicsClient
oapi, 50
oapiRegisterLaunchpadltem
Dialog, 155
oapiRegisterMFD
Panel, 126
oapiRegisterMFDMode
CustomMFD, 144
Obsolete, 170
oapiRegisterModule
oapi, 51
oapiRegisterPanel Area
Panel, 127
oapiRegisterPanelBackground
Panel, 128
oapiRegisterReentryTexture
oapi, 51
oapiReleaseBrush
DrawSupport, 136
oapiReleaseDC
DrawSupport, 137
oapiReleaseFont
DrawSupport, 137
oapiReleasePen
DrawSupport, 137
oapiReleaseSketchpad
DrawSupport, 137
oapiReleaseTexture
Mesh, 118
oapiRenderHUD
Panel, 128
oapiSaveScenario
FilelO, 161
oapiSendMFDKey
Panel, 129
oapiSetAttitudeMode
oapi_vessel, 77
oapiSetDefNavDisplay
Panel, 129
oapiSetDefRCSDisplay
Panel, 129
oapiSetEmptyMass
oapi_vessel, 77
oapiSetEngineLevel
oapi_vessel, 78
oapiSetFocusAttitudeMode
oapi_vessel, 78
oapiSetFocusObject

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

600

ObjectAccess, 59
oapiSetHUDMode

Panel, 130
oapiSetMaterial

Mesh, 118
oapiSetMeshProperty

Mesh, 119
oapiSetPanel

Panel, 131
oapiSetPanelNeighbours

Panel, 131
oapiSetPause

oapi_time, 101
oapiSetSimMJID

oapi_time, 101
oapiSetSurfaceColourKey

Surface, 142
oapiSetTexture

Mesh, 120
oapiSetTimeAcceleration

oapi_time, 102
oapiSwitchPanel

Panel, 131
oapiTime2MJID

oapi_time, 103
oapiToggleAttitudeMode

oapi_vessel, 78
oapiToggleFocusAttitudeMode

oapi_vessel, 79
oapiToggleHUDColour

Panel, 132
oapiToggleMFD_on

Panel, 132
oapiTriggerPanelRedrawArea

Panel, 132
oapiTriggerRedrawArea

Panel, 132
oapiUnregisterCustomCmd

Dialog, 155
oapiUnregisterLaunchpadltem

Dialog, 155
oapiUnregisterMFDMode

CustomMFD, 144
oapiVCRegisterArea

VirtualCockpit, 145
oapiVCRegisterHUD

VirtualCockpit, 146
oapiVCRegisterMFD

VirtualCockpit, 146
0apiVCSetAreaClickmode_Quadrilateral

VirtualCockpit, 147
oapiVCSetAreaClickmode_Spherical

VirtualCockpit, 147
0apiVCSetNeighbours

VirtualCockpit, 148
0apiVCTriggerRedrawArea

VirtualCockpit, 148
oapiWriteItem_bool

FilelO, 161
oapiWriteltem_float

FilelO, 161
oapiWriteltem_int

FilelO, 161
oapiWriteltem_string

FilelO, 162
oapiWriteltem_vec

FilelO, 162
oapiWriteLine

FilelO, 162
oapiWriteLog

FilelO, 163
oapiWriteScenario_float

FilelO, 163
oapiWriteScenario_int

FilelO, 163
oapiWriteScenario_string

FilelO, 163
oapiWriteScenario_vec

FilelO, 163
Object access functions, 51
Object parameter flags, 44
ObjectAccess

oapiGetBaseByIndex, 53

oapiGetBaseByName, 53

oapiGetBaseCount, 53

oapiGetCelbodylInterface, 53

oapiGetFocuslInterface, 54
oapiGetFocusObject, 54
oapiGetGbodyBylndex, 54
oapiGetGbodyByName, 55
0apiGetGbodyCount, 55
oapiGetObjectBylIndex, 55
oapiGetObjectByName, 56
oapiGetObjectCount, 56
oapiGetObjectName, 56
oapiGetObjectParam, 56
oapiGetObjectType, 57
oapiGetVesselBylIndex, 57
oapiGetVesselByName, 58
oapiGetVesselCount, 58
oapiGetVessellnterface, 58
oapilsVessel, 59
oapiSetFocusObject, 59

OBJHANDLE
handle, 19

Obsolete

oapiGetAtmPressureDensity, 169
oapiGetFocusAtmPressureDensity, 169

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 601

oapiGetMFDModeSpec, 169 vessel_clbk, 185
oapiGetStationByIndex, 170 ovclnit
oapiGetStationByName, 170 vessel_clbk, 185
oapiRegisterMFDMode, 170
Obsolete functions, 168 Panel
Onscreen annotations, 166 oapiBltPanelAreaBackground, 122
opcCloseRenderViewport oapiDecHUDIntensity, 123
plugin_clbk, 186 oapiGetHUDMode, 123
opcDeleteVessel 0apiGetMFDMode, 123
plugin_clbk, 187 oapilncHUDIntensity, 124
opcFocusChanged oapiMFDButtonLabel, 124
plugin_clbk, 187 0apiOpenMFD, 124
opcOpenRenderViewport oapiProcessMFDButton, 125
plugin_clbk, 188 oapiRefreshMFDButtons, 125
opcPause oapiRegisterMFD, 126
plugin_clbk, 188 oapiRegisterPanel Area, 127
opcPostStep oapiRegisterPanelBackground, 128
plugin_clbk, 188 oapiRenderHUD, 128
opcPreStep oapiSendMFDKey, 129
plugin_clbk, 189 oapiSetDefNavDisplay, 129
opcTimeAccChanged oapiSetDefRCSDisplay, 129
plugin_clbk, 189 oapiSetHUDMode, 130
OpenDialog oapiSetPanel, 131
Launchpadltem, 265 oapiSetPanelNeighbours, 131
OpenModeHelp oapiSwitchPanel, 131
ExternMFD, 217 oapiToggleHUDColour, 132
operator * oapiToggleMFD_on, 132
vec, 24, 25 oapiTriggerPanelRedrawArea, 132
operator *= oapiTriggerRedrawArea, 132
vec, 25 Panel neighbour identifiers, 40
operator+ Panel redraw event identifiers, 41
vec, 25, 26 PANELHANDLE
operator+= handle, 19
vec, 26 ParseScenarioLine
operator- VESSEL, 482
vec, 26, 27 ParseScenarioLineEx
operator-= VESSEL, 477
vec, 27 ParticleStream
operator/ oapi::ParticleStream, 304
vec, 27 PARTICLESTREAMSPEC, 307
operator/= DIFFUSE, 309
vec, 28 EMISSIVE, 309
Orbiter API interface methods, 44 LEVELMAP, 309
Orbitersdk/include/CelBodyAPLh, 516 levelmap, 309
Orbitersdk/include/DrawAPLh, 517 LTYPE, 309
Orbitersdk/include/MFDAPLh, 518 Itype, 309
Orbitersdk/include/OrbiterAPLh, 518 LVL_FLAT, 309
Orbitersdk/include/Vessel APLh, 566 LVL_LIN, 309
ORBITPARAM, 301 LVL_PLIN, 309
OrbitStabilised LVL_PSQRT, 309
VESSEL, 372 LVL_SQRT, 309
outerp Pen
vec, 28 oapi::Pen, 310
ovcExit Pixel

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

602

oapi::Sketchpad, 323
Planet
oapiGetGroundVector, 90
oapiGetPlanetAtmConstants, 90
oapiGetPlanetAtmParams, 91
oapiGetPlanetCurrentRotation, 92
oapiGetPlanet]Coeff, 92
oapiGetPlanet]CoeffCount, 92
oapiGetPlanetObliquity, 93
oapiGetPlanetObliquityMatrix, 93
oapiGetPlanetPeriod, 94
oapiGetPlanetTheta, 94
oapiGetWindVector, 94
oapiPlanetHasAtmosphere, 95
Playback
VESSEL, 451
Plot
GraphMFD, 261
Plugin module callback functions, 186
plugin_clbk
opcCloseRenderViewport, 186
opcDeleteVessel, 187
opcFocusChanged, 187
opcOpenRenderViewport, 188
opcPause, 188
opcPostStep, 188
opcPreStep, 189
opcTimeAccChanged, 189
PointLight, 310
GetAttenuation, 313
GetRange, 312
PointLight, 312
SetAttenuation, 313
SetRange, 312
Polygon
oapi::Sketchpad, 326
Polyline
oapi::Sketchpad, 326
PolyPolygon
oapi::Sketchpad, 327
PolyPolyline
oapi::Sketchpad, 327
PRM_ALT
ATMOSPHERE, 194
PRM_AP
ATMOSPHERE, 194
PRM_F
ATMOSPHERE, 194
PRM_FBR
ATMOSPHERE, 194
PRM_IN_FLAG
ATMOSPHERE, 194
PRM_LAT
ATMOSPHERE, 194

PRM_LNG
ATMOSPHERE, 194

ProcessButton
ExternMFD, 216

PROPELLANT_HANDLE
handle, 19

PSTREAM_HANDLE
handle, 20

RCS mode identifiers, 38
ReadStatus
MFD, 285
RecallStatus
MFD, 286
RecordEvent
VESSEL, 451
Recording
VESSEL, 450
Rectangle
oapi::Sketchpad, 325
RegisterAnimation
VESSEL, 447
RegisterPanel Area
VESSEL3, 503
RegisterPanelMFDGeometry
VESSEL3, 502
RegisterVisObject
oapi::GraphicsClient, 230
Render parameter identifiers, 14
Render2DOverlay
oapi::GraphicsClient, 253
RENDER_FULLSCREEN
oapi::Module, 292
RENDER_NONE
oapi::Module, 292
RENDER_WINDOW
oapi::Module, 292
RenderMode
oapi::Module, 292
renderprm
RP_STENCILDEPTH, 14
RenderWndProc
oapi::GraphicsClient, 235
Resize
ExternMFD, 217
RIGHT
oapi::Sketchpad, 318
RP_STENCILDEPTH
renderprm, 14

SaveDefaultState
VESSEL, 481
ScreenAnnotation
oapi::ScreenAnnotation, 315

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX 603
Script SetCameraMovement

oapiAsyncScriptCmd, 107 VESSEL, 438

oapiCreatelnterpreter, 108 SetCameraOffset

oapiDellnterpreter, 108 VESSEL, 435

oapiExecScriptCmd, 108 SetCameraRotationRange
Script interpreter functions, 107 VESSEL, 437
SelectDefaultFont SetCameraShiftRange

MFD, 282 VESSEL, 438
SelectDefaultPen SetClipRadius

MFD, 282 VESSEL, 361
SendBufferedKey SetCOG_elev

VESSEL, 430 VESSEL, 480
SendKey SetColour

ExternMFD, 217 oapi::ScreenAnnotation, 315
SetADCtrIMode SetControlSurfaceLevel

VESSEL, 374 VESSEL, 391
SetAlbedoRGB SetCrossSections

VESSEL, 361 VESSEL, 364
SetAngularVel SetCW

VESSEL, 371 VESSEL, 393
SetAnimation SetDefaultPropellantResource

VESSEL, 450 VESSEL, 407
SetAperture SetDirection

SpotLight, 331 LightEmitter, 272
SetAtmosphere SetDirectionRef

CELBODY?2, 207 LightEmitter, 272
SetAttachmentParams SetDockMode

VESSEL, 462 VESSEL, 460
SetAttenuation SetDockParams

PointLight, 313 VESSEL, 457
SetAttitudeLinLevel SetElements

VESSEL, 430 VESSEL, 377
SetAttitudeMode SetEmptyMass

VESSEL, 427 VESSEL, 362
SetAttitudeRotLevel SetEnableFocus

VESSEL, 429 VESSEL, 359
SetAutoRange SetEngineLevel

GraphMFD, 260 VESSEL, 477
SetAutoTicks SetExhaustScales

GraphMFD, 260 VESSEL, 478
SetAxisTitle SetFixedDir

GraphMFD, 261 oapi::ParticleStream, 305
SetBackgroundColor SetFixedPos

oapi::Sketchpad, 320 oapi::ParticleStream, 305
SetBackgroundMode SetFont

oapi::Sketchpad, 321 oapi::Sketchpad, 319
SetBankMomentScale SetFuelMass

VESSEL, 479 VESSEL, 408
SetBrush SetGlobalOrientation

oapi::Sketchpad, 320 VESSEL, 372
SetCameraCatchAngle SetGravityGradientDamping

VESSEL, 437 VESSEL, 366
SetCameraDefaultDirection SetIDSChannel

VESSEL, 436 VESSEL, 433

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

SetISP
VESSEL, 419
SetLevelPtr
oapi::ParticleStream, 306
SetLiftCoeffFunc
VESSEL, 398
SetMaxFuelMass
VESSEL, 407
SetMaxWheelbrakeForce
VESSEL, 473
SetMeshVisibilityMode
VESSEL, 445
SetMeshVisiblelnternal
VESSEL, 481
SetMode
ExternMFD, 217
SetNavChannel
VESSEL, 431
SetNavRecv
VESSEL, 480
SetNosewheelSteering
VESSEL, 472
SetOrigin
oapi::Sketchpad, 322
SetPanelBackground
VESSEL3, 501
SetPanelScaling
VESSEL3, 502
SetPen
oapi::Sketchpad, 319
SetPitchMomentScale
VESSEL, 396
SetPMI
VESSEL, 365
SetPosition
LightEmitter, 270
oapi::ScreenAnnotation, 315
SetPositionRef
LightEmitter, 271
SetPropellantEfficiency
VESSEL, 406
SetPropellantMass
VESSEL, 405
SetPropellantMaxMass
VESSEL, 404
SetRange
GraphMFD, 260
PointLight, 312
SetReentryTexture
VESSEL, 469
SetRotationMatrix
VESSEL, 453
SetRotDrag
VESSEL, 396

SetSize
oapi::ScreenAnnotation, 315
VESSEL, 360

SetSurfaceFrictionCoeff
VESSEL, 364

SetText
oapi::ScreenAnnotation, 315

SetTextAlign
oapi::Sketchpad, 320

SetTextColor
oapi::Sketchpad, 320

SetThrusterDir
VESSEL, 412

SetThrusterGroupLevel
VESSEL, 424

SetThrusterIsp
VESSEL, 416

SetThrusterLevel
VESSEL, 417

SetThrusterLevel_SingleStep
VESSEL, 417

SetThrusterMax0
VESSEL, 413

SetThrusterRef
VESSEL, 411

SetThrusterResource
VESSEL, 411

SetTouchdownPoints
VESSEL, 363

SetTransponderChannel
VESSEL, 433

SetTrimScale
VESSEL, 398

SetVariableDir
oapi::ParticleStream, 306

SetVariablePos
oapi::ParticleStream, 306

SetVessel
ExternMFD, 216

SetVisibilityLimit
VESSEL, 360

SetWheelbrakeLevel
VESSEL, 473

SetWingAspect
VESSEL, 394

SetWingEffectiveness
VESSEL, 395

SetYawMomentScale
VESSEL, 397

ShiftCentreOfMass
VESSEL, 451

ShiftCG
VESSEL, 452

ShiftExplicitPosition

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

LightEmitter, 271
ShiftMesh
VESSEL, 442
ShiftMeshes
VESSEL, 442
SidRotPeriod
CELBODY?2, 207
Sketchpad
oapi::Sketchpad, 319
Some useful general constants, 16
SpotLight, 328
GetPenumbra, 331
GetUmbra, 331
SetAperture, 331
SpotLight, 330
status
VESSELSTATUS, 510
VESSELSTATUS2, 513
StoreStatus
MFD, 285
Structure definitions, 17
Style
oapi::Font, 219
surf_hdg
VESSELSTATUS?2, 514
surf_lat
VESSELSTATUS2, 514
surf_Ing
VESSELSTATUS?2, 514
Surface
oapiBlt, 139
oapiClearSurfaceColourKey, 140
oapiColourFill, 140
oapiCreateSurface, 140, 141
oapiCreateTextureSurface, 141
oapiDestroySurface, 142
oapiSetSurfaceColourKey, 142
Surface base interface, 95
Surface functions, 138
SURFHANDLE
handle, 20

TAlign_horizontal

oapi::Sketchpad, 318
TAlign_vertical

oapi::Sketchpad, 318
Text

oapi::Sketchpad, 322
TextBox

oapi::Sketchpad, 323
TexturePath

oapi::GraphicsClient, 237
THGROUP_ATT_BACK

thrusterparam, 33

THGROUP_ATT_BANKLEFT
thrusterparam, 33
THGROUP_ATT_BANKRIGHT
thrusterparam, 33
THGROUP_ATT_DOWN
thrusterparam, 33
THGROUP_ATT_FORWARD
thrusterparam, 33
THGROUP_ATT_LEFT
thrusterparam, 33
THGROUP_ATT_PITCHDOWN
thrusterparam, 33
THGROUP_ATT_PITCHUP
thrusterparam, 33
THGROUP_ATT_RIGHT
thrusterparam, 33
THGROUP_ATT_UP
thrusterparam, 33
THGROUP_ATT_YAWLEFT
thrusterparam, 33
THGROUP_ATT_YAWRIGHT
thrusterparam, 33
THGROUP_HANDLE
handle, 20
THGROUP_HOVER
thrusterparam, 33
THGROUP_MAIN
thrusterparam, 33
THGROUP_RETRO
thrusterparam, 33
THGROUP_TYPE
thrusterparam, 33
THGROUP_USER
thrusterparam, 33

Thruster and thruster-group parameters, 32

THRUSTER_HANDLE
handle, 20

ThrusterGroupDefined
VESSEL, 423

thrusterparam
ENGINE_ATTITUDE, 33
ENGINE_HOVER, 33
ENGINE_MAIN, 33
ENGINE_RETRO, 33
ENGINETYPE, 33
THGROUP_ATT_BACK, 33
THGROUP_ATT_BANKLEFT, 33

THGROUP_ATT_BANKRIGHT, 33

THGROUP_ATT_DOWN, 33
THGROUP_ATT_FORWARD, 33
THGROUP_ATT_LEFT, 33

THGROUP_ATT_PITCHDOWN, 33

THGROUP_ATT_PITCHUP, 33
THGROUP_ATT_RIGHT, 33

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

606

THGROUP_ATT_UP, 33
THGROUP_ATT_YAWLEFT, 33
THGROUP_ATT_YAWRIGHT, 33
THGROUP_HOVER, 33
THGROUP_MAIN, 33
THGROUP_RETRO, 33
THGROUP_TYPE, 33
THGROUP_USER, 33

Time functions, 98

Title
MFD, 281
MFD2, 288

tmul
vec, 28

ToggleAttitudeMode
VESSEL, 428

ToggleNavmode
VESSEL, 375

TOP
oapi::Sketchpad, 318

Top-level module callback functions, 183

UNDERLINE
oapi::Font, 219
Undock
VESSEL, 460
unit
vec, 29
UnregisterAnimation
VESSEL, 447
Unregister VisObject
oapi::GraphicsClient, 230
Update
MFD, 281
MFD2, 288
User input functions, 165
UserInput
oapiOpenInputBox, 165
Utility
oapiGetColour, 164
oapiRand, 164
Utility functions, 164

vdata
VESSELSTATUS, 510
vec
M, 22
_V,22
crossp, 23
dist, 23
dotp, 23
length, 23
mul, 24
normalise, 24

operator *, 24, 25
operator *=, 25
operator+, 25, 26
operator+=, 26
operator-, 26, 27
operator-=, 27
operator/, 27
operator/=, 28
outerp, 28
tmul, 28
unit, 29
vecepy, 29

veccpy
vec, 29

VECTOR3, 331

Vectors and matrices, 20

Version
CELBODY, 201
oapi::ModuleNV, 297
VESSEL, 356

VESSEL, 332
ActivateNavmode, 374
AddAnimationComponent, 448
AddBeacon, 473
AddExhaust, 465-467
AddExhaustStream, 470, 471
AddForce, 402
AddMesh, 439, 440
AddParticleStream, 470
AddPointLight, 475
AddReentryStream, 471
AddSpotLight, 475
AttachChild, 464
AttachmentCount, 463
ClearAirfoilDefinitions, 388
ClearAttachments, 462
ClearBeacons, 474
ClearControlSurfaceDefinitions, 391
ClearDockDefinitions, 457
ClearLightEmitters, 477
ClearMeshes, 439, 480
ClearPropellantResources, 403
ClearThrusterDefinitions, 410
ClearVariableDragElements, 393
CopyMeshFromTemplate, 445
Create, 482
CreateAirfoil, 384
CreateAirfoil2, 385
CreateAirfoil3, 386
CreateAnimation, 447
CreateAttachment, 461
CreateControlSurface, 388
CreateControlSurface2, 389
CreateControlSurface3, 390

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

607

CreateDock, 456
CreatePropellantResource, 402
CreateThruster, 408
CreateThrusterGroup, 419
CreateVariableDragElement, 392
DeactivateNavmode, 374
DefSetState, 367
DefSetStateEx, 368
DelAirfoil, 388
DelAnimation, 448
DelAnimationComponent, 449
DelAttachment, 461
DelBeacon, 474
DelControlSurface, 390
DelDock, 456

DelExhaust, 468
DelExhaustStream, 472
DelLightEmitter, 476
DelMesh, 441
DelPropellantResource, 403
DelThruster, 409
DelThrusterGroup, 420, 478
DetachChild, 465

Dock, 459

DockCount, 458
DockingStatus, 459
EditAirfoil, 387
EnablelDS, 433
EnableTransponder, 432
GetADCtrlMode, 373
GetAirfoilParam, 386
GetAirspeed, 383
GetAltitude, 379
GetAngularAcc, 370
GetAngularMoment, 371
GetAngularVel, 370
GetAnimPtr, 450

GetAOA, 384

GetApDist, 379
GetArgPer, 378
GetAtmDensity, 381
GetAtmPressure, 382
GetAtmRef, 381
GetAtmTemperature, 381
GetAttachmentHandle, 464
GetAttachmentld, 463
GetAttachmentIndex, 464
GetAttachmentParams, 462
GetAttachmentStatus, 463
GetAttitudeLinLevel, 429
GetAttitudeMode, 427
GetAttitudeRotLevel, 428
GetBank, 380
GetBankMomentScale, 479

GetBeacon, 475
GetCameraDefaultDirection, 436
GetCameraOffset, 435
GetClassName, 357
GetClipRadius, 360
GetCOG_elev, 362
GetControlSurfaceLevel, 392
GetCrossSections, 364

GetCW, 393

GetDamageModel, 358

GetDefaultPropellantResource, 407

GetDevMesh, 444
GetDockHandle, 458
GetDockParams, 458
GetDockStatus, 458
GetDrag, 399
GetDragVector, 400
GetDynPressure, 382
GetEditorModule, 357
GetElements, 375, 376
GetEmptyMass, 362
GetEnableFocus, 358
GetEquPos, 381
GetExhaustCount, 468
GetExhaustLevel, 469
GetExhaustSpec, 468, 469
GetFlightModel, 358
GetFlightStatus, 368
GetForceVector, 401
GetFuelMass, 408
GetFuelRate, 408
GetGlobalOrientation, 371
GetGlobalPos, 369
GetGlobal Vel, 369
GetGravityGradientDamping, 366
GetGravityRef, 375
GetGroupThruster, 422, 423
GetGroupThrusterCount, 422
GetHandle, 357
GetHorizonAirspeedVector, 383
GetIDS, 434

GetISP, 418

GetLift, 399

GetLiftVector, 400
GetLightEmitter, 476
GetLinearMoment, 370
GetMachNumber, 382
GetManualControlLevel, 426
GetMass, 368
GetMaxFuelMass, 407
GetMesh, 443
GetMeshCount, 443
GetMeshName, 444
GetMeshOffset, 443

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

608

GetMeshTemplate, 444
GetMeshVisibilityMode, 445
GetName, 357
GetNavChannel, 432
GetNavCount, 431
GetNavmodeState, 375
GetNavRecv, 480
GetNavRecvFreq, 432
GetNavSource, 435
GetNosewheelSteering, 472
GetPeDist, 378

GetPitch, 380
GetPitchMomentScale, 396
GetPMI, 365
GetPropellantCount, 403
GetPropellantEfficiency, 405
GetPropellantFlowrate, 406
GetPropellantHandleByIndex, 403
GetPropellantMass, 404
GetPropellantMaxMass, 404
GetRelativePos, 369
GetRelativeVel, 370
GetRotationMatrix, 453
GetRotDrag, 395
GetShipAirspeed Vector, 383
GetSize, 359

GetSlipAngle, 384

GetSMi, 378

GetStatus, 367

GetStatusEx, 367
GetSuperstructureCG, 452
GetSurfaceRef, 379
GetThrusterCount, 410
GetThrusterDir, 412
GetThrusterGroupHandle, 421
GetThrusterGroupLevel, 426
GetThrusterHandleByIndex, 410
GetThrusterIsp, 415
GetThrusterIsp0, 414
GetThrusterLevel, 416
GetThrusterMax, 413, 414
GetThrusterMaxO0, 412
GetThrusterMoment, 418
GetThrusterRef, 411
GetThrusterResource, 410
GetThrustVector, 400
GetTorqueVector, 401
GetTotalPropellantFlowrate, 406
GetTotalPropellantMass, 405
GetTouchdownPoints, 363
GetTransponder, 434
GetTrimScale, 397
GetUserThrusterGroupCount, 423

GetUserThrusterGroupHandleByIndex, 421

GetWeightVector, 399
GetWheelbrakeLevel, 473
GetWingAspect, 394
GetWingEffectiveness, 395
GetYaw, 380
GetYawMomentScale, 397
Global2Local, 455
GlobalRot, 453
GroundContact, 372
HorizonlnvRot, 454
HorizonRot, 454
IncEngineLevel, 478
IncThrusterGroupLevel, 424

IncThrusterGroupLevel_SingleStep, 425

IncThrusterLevel, 417
IncThrusterLevel_SingleStep, 418
InitNavRadios, 431
InsertMesh, 440, 441
LightEmitterCount, 476
Local2Global, 454

Local2Rel, 455
MeshgroupTransform, 446
MeshModified, 446
NonsphericalGravityEnabled, 373
OrbitStabilised, 372
ParseScenarioLine, 482
ParseScenarioLineEx, 477
Playback, 451

RecordEvent, 451

Recording, 450
RegisterAnimation, 447
SaveDefaultState, 481
SendBufferedKey, 430
SetADCtrIMode, 374
SetAlbedoRGB, 361
SetAngularVel, 371
SetAnimation, 450
SetAttachmentParams, 462
SetAttitudeLinLevel, 430
SetAttitudeMode, 427
SetAttitudeRotLevel, 429
SetBankMomentScale, 479
SetCameraCatchAngle, 437
SetCameraDefaultDirection, 436
SetCameraMovement, 438
SetCameraOffset, 435
SetCameraRotationRange, 437
SetCameraShiftRange, 438
SetClipRadius, 361
SetCOG_elev, 480
SetControlSurfaceLevel, 391
SetCrossSections, 364

SetCW, 393

SetDefaultPropellantResource, 407

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

609

SetDockMode, 460
SetDockParams, 457
SetElements, 377
SetEmptyMass, 362
SetEnableFocus, 359
SetEngineLevel, 477
SetExhaustScales, 478
SetFuelMass, 408
SetGlobalOrientation, 372
SetGravityGradientDamping, 366
SetIDSChannel, 433

SetISP, 419
SetLiftCoeffFunc, 398
SetMaxFuelMass, 407
SetMaxWheelbrakeForce, 473
SetMeshVisibilityMode, 445
SetMeshVisiblelnternal, 481
SetNavChannel, 431
SetNavRecv, 480
SetNosewheelSteering, 472
SetPitchMomentScale, 396
SetPMI, 365
SetPropellantEfficiency, 406
SetPropellantMass, 405
SetPropellantMaxMass, 404
SetReentryTexture, 469
SetRotationMatrix, 453
SetRotDrag, 396

SetSize, 360
SetSurfaceFrictionCoeff, 364
SetThrusterDir, 412
SetThrusterGroupLevel, 424
SetThrusterIsp, 416
SetThrusterLevel, 417
SetThrusterLevel_SingleStep, 417
SetThrusterMaxO0, 413
SetThrusterRef, 411
SetThrusterResource, 411
SetTouchdownPoints, 363
SetTransponderChannel, 433
SetTrimScale, 398
SetVisibilityLimit, 360
SetWheelbrakeLevel, 473
SetWingAspect, 394
SetWingEffectiveness, 395
SetYawMomentScale, 397
ShiftCentreOfMass, 451
ShiftCG, 452

ShiftMesh, 442
ShiftMeshes, 442
ThrusterGroupDefined, 423
ToggleAttitudeMode, 428
ToggleNavmode, 375
Undock, 460

UnregisterAnimation, 447
Version, 356
VESSEL, 356

Vessel creation and destruction, 60

Vessel functions, 64

Vessel mesh visibility flags, 43

Vessel module callback functions, 184

VESSEL2, 482
clbkADCtrlMode, 491
clbkAnimate, 493
clbkConsumeBufferedKey, 494
clbkConsumeDirectKey, 494
clbkDockEvent, 493
clbkDrawHUD, 490
clbkFocusChanged, 487
clbkHUDMode, 492
clbkLoadGenericCockpit, 495
clbkLoadPanel, 495
clbkLoadStateEx, 486
clbkLoadVC, 497
clbkMFDMode, 492
clbkNavMode, 493
clbkPanelMouseEvent, 496
clbkPanelRedrawEvent, 496
clbkPlaybackEvent, 489
clbkPostCreation, 487
clbkPostStep, 488
clbkPreStep, 488
cIbkRCSMode, 491
clbkSaveState, 486
clbkSetClassCaps, 485
clbkSetStateEx, 487
clbkVCMouseEvent, 498
clbkVCRedrawEvent, 498
clbkVisualCreated, 489
clbkVisualDestroyed, 490
VESSEL2, 485

VESSEL3, 499
clbkDrawHUD, 506
clbkGeneric, 505
clbkGetRadiationForce, 508
clbkLoadPanel2D, 505
clbkPanelMouseEvent, 504
clbkPanelRedrawEvent, 504
clbkRenderHUD, 507
RegisterPanelArea, 503
RegisterPanelMFDGeometry, 502
SetPanelBackground, 501
SetPanelScaling, 502
VESSEL3, 501

vessel_clbk
ovcExit, 185
ovclnit, 185

VesselCreation

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

INDEX

610

oapiCreateVessel, 60

oapiCreateVesselEx, 60

oapiDeleteVessel, 61
VESSELSTATUS, 508

flag, 510

status, 510

vdata, 510
VESSELSTATUS?2, 510

arot, 514

flag, 513

status, 513

surf_hdg, 514

surf_lat, 514

surf_Ing, 514
VESSELSTATUS2::DOCKINFOSPEC, 514
VESSELSTATUS2::FUELSPEC, 515
VESSELSTATUS2:: THRUSTSPEC, 515
Virtual cockpit functions, 145
VirtualCockpit

oapiVCRegisterArea, 145

oapiVCRegisterHUD, 146

oapiVCRegisterMFD, 146

0apiVCSetAreaClickmode_Quadrilateral, 147

oapiVCSetAreaClickmode_Spherical, 147

oapiVCSetNeighbours, 148

oapiVCTriggerRedrawArea, 148
VISHANDLE

handle, 20
Visual and mesh functions, 109

WriteStatus
MFD, 285

Generated on Sat Aug 21 03:42:42 2010 for Orbiter API by Doxygen

	Orbiter API Reference Manual
	Orbiter API Module Index
	Orbiter API Hierarchical Index
	Orbiter API Class Index
	Orbiter API File Index
	Orbiter API Page Index
	Orbiter API Module Documentation
	Orbiter API Class Documentation
	Orbiter API File Documentation
	Orbiter API Example Documentation
	VESSEL2.cpp
	Orbiter API Page Documentation

